

การออกแบบยาต้านแบคทีเรียชนิดใหม่ที่ออกฤทธิ์ยับยั้ง
เอนไซม์ DNA topoisomerase II โดยใช้เทคนิค molecular docking

นายสมเจตน์ ทองบัว
นายอานันท์ ภัทรปวัตน์วิทู

โครงการพิเศษนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
ปริญญาเภสัชศาสตรบัณฑิต
คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

พ.ศ. 2556

DESIGN OF NEW DNA TOPOISOMERASE II INHIBITORS
AS NEW ANTIBACTIRAIL DRUGS
BY USING MOLECULAR DOCKING TECHNIQUE

MISTER SOMCHET TONGBUA

MISTER ARNON PATTARAPAWATVITU

A SPECIAL PROJECT SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHARMACY
FACULTY OF PHARMACY
MAHIDOL UNIVERSITY
2013

โครงการพิเศษ

เรื่อง การออกแบบยาต้านแบคทีเรียชนิดใหม่ที่ออกฤทธิ์ขับยั่งเงนไชม์

DNA topoisomerase II โดยใช้เทคนิค molecular docking

.....

(นายสมเจตนา ทองบัว)

.....

(นายอานันท์ ภัทรวัตโนวุฒิ)

.....

(อ.ดร.จุฬารัตน์ พิมพ์ทนต์)

อาจารย์ที่ปรึกษา

.....

(อ.ดร.จิระวัฒน์ จิตติคุณ)

อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

การออกแบบยาต้านแบคทีเรียชนิดใหม่ที่ออกฤทธิ์ยับยั้งเอนไซม์

DNA topoisomerase II โดยใช้เทคนิค molecular docking

สมเจตน์ ทองบัว, งานนท์ ภัทรวัฒน์วิทู

อาจารย์ที่ปรึกษา: จุฑารัตน์ พิมพ์พนธ์*, จิราพร จิตติคุณ**

* ภาควิชาเภสัชเคมี คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

**ภาควิชาชีวเคมี คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

คำสำคัญ: ยาต้านแบคทีเรีย, topoisomerase II, DNA gyrase, GSK 299423, drug design, inhibitor, molecular docking, pharmacophore

เอนไซม์ topoisomerase II (DNA gyrase) เป็นเป้าหมายที่น่าสนใจในการพัฒนายาต้านเชื้อแบคทีเรีย เนื่องจากเป็นเอนไซม์ที่พบเฉพาะในเชื้อแบคทีเรียเท่านั้น ไม่พบในมนุษย์ ทำให้เกิดผลข้างเคียงต่ำ ปัจจุบันมียาที่ออกฤทธิ์ยับยั้งการทำงานของเอนไซม์ DNA gyrase คือยากลุ่ม fluoroquinolones แต่พบว่าอัตราการดื้อยากลุ่มนี้มีแนวโน้มสูงขึ้น ส่วนใหญ่เกิดจากการกลายพันธุ์ (mutation) ของเอนไซม์เป็นผลให้บริเวณแล่ง (active site) เกิดการเปลี่ยนแปลง ทำให้ยาจับได้ไม่ดี ผลให้ประสิทธิภาพของตัวยาลดลง จากเหตุผลดังกล่าวข้างต้น จึงมีการศึกษาจนนำไปสู่การค้นพบยาที่มีโครงสร้างและกลไกการออกฤทธิ์ที่แตกต่างจากยา กลุ่ม fluoroquinolones คือ GSK299423 ซึ่งสามารถยับยั้งการทำงานของเอนไซม์ DNA gyrase โดยจับกับที่คุณลักษณะเด่นของยากลุ่ม fluoroquinolones ทำให้ยังคงมีฤทธิ์แม้เชื้อจะต่อต้านยากลุ่ม fluoroquinolones จึงเป็นที่มาของการศึกษาการเกิดอันตรายระหว่าง GSK299423 กับเอนไซม์ DNA gyrase เพื่อช่วยออกแบบยาที่มีโครงสร้างแตกต่างจากยา กลุ่ม fluoroquinolones ที่มีประสิทธิภาพสูงในการยับยั้งเอนไซม์ DNA gyrase ใน การศึกษาครั้นนี้ได้นำเทคนิค molecular docking เพื่อตรวจสอบอันตรายระหว่าง GSK299423 กับเอนไซม์ DNA gyrase เพื่อช่วยออกแบบและค้นหาโครงสร้างอนุพันธ์ตัวใหม่ที่มีฤทธิ์แรง (potent) ผลการวิเคราะห์การเกิดอันตราย พบว่าง piperidine ของ GSK299423 และอนุพันธ์จับกับบริเวณแล่งของเอนไซม์ DNA gyrase ที่ aspartic acid ตำแหน่ง 1083 เป็นส่วนใหญ่ ส่วนของเทอโนไซคลิกที่พบทางด้านข้างมีของวง piperidine ช่วยในการจับกับสาย DNA จากข้อมูลดังกล่าวรวมกับการประเมินลักษณะการจับของอนุพันธ์ที่มีฤทธิ์ดีของ GSK299423 ที่มีรายงานก่อนหน้านี้ทำให้ทราบถึงรูปแบบโครงสร้างที่จำเป็นต่อการออกฤทธิ์ (pharmacophore) ได้แก่ ส่วนของบริเวณ hydrophobic และส่วนของวง aromatic ซึ่ง pharmacophore นี้ช่วยในการจับกับโปรตีน จึงสามารถนำมาใช้เป็นแนวทางในการคัดเลือกสารจากฐานข้อมูล (database) รวมทั้งออกแบบสารใหม่ที่มีฤทธิ์แรงและจำเพาะ (specific) ในการยับยั้งการทำงานของเอนไซม์ DNA gyrase

Abstract

Design of new DNA topoisomerase II inhibitors as new antibacterial drugs by using molecular docking techniques

Somchet Tongbua, Arnon Pattarapawatvitu

Project advisor: Jutarat Pimthon*, Jiraphun Jittikoon**

* Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University

**Department of Biochemistry, Faculty of Pharmacy, Mahidol University

Keyword:anti-bacterial, topoisomerase II, DNA gyrase, GSK 299423, drug design, inhibitor, molecular docking, pharmacophore

Type II topoisomerase (DNA gyrase), an enzyme responsible for the breaking and restoration of the DNA double helix, is an attractive target for the development of novel antibacterial agents. It is found only in prokaryotes. Therefore, antibiotics that act by inhibiting this enzyme may show little side effect in human. Fluoroquinolones are known to inhibit bacterial DNA gyrase. However, an increase in rates of fluoroquinolones resistance has been reported, mainly due to mutations that alter the binding site of the antimicrobial with DNA gyrase. Hence, there have been numerous of efforts to discover novel agent that have structures and mechanisms differ from fluoroquinolones. A novel nonfluoroquinolone inhibitor, called GSK299423, has demonstrated exceptional broad spectrum antibacterial activity by inhibiting DNA gyrase. Interestingly, it binds to a target different form that of fluoroquinolones. Accordingly, fluoroquinolones-resistance bacterial strains has no effect on the inhibitory activity of GSK299423. The main aim of this research is to investigate the interaction between GSK299423 including its analogs and DNA gyrase to aid design novel and highly effective bacterial type II topoisomerase inhibitors by using molecular docking studies. The results indicated the piperidine ring of GSK299423 and derivatives forms a hydrogen bond to an aspartic acid side chain at position 1083 of DNA gyrase and the Left-Hand-Side substitutions of piperidine ring binds to the bacterial DNA. In addition, structure-based pharmacophore model was generated based on the bioactive binding poses GSK299423 and its analogs containing one hydrophobic feature and two aromatic features. This pharmacophore can interact with protein. The query was then used to search the database for compounds that mimic the pharmacophore and can potentially bind to the target. Taken together, the results from the current study can be extremely useful for suggesting new drug candidates which are highly selective and potent inhibitors of DNA gyrase.