

การสังเคราะห์และการพิสูจน์เอกสารกําชنهของ
N-Octyl chitosan

นางสาวจุฑามาศ แซ่ลิม
นางสาวจุฑามาศ หล่อสุทธิศรีชูรุ

โครงการพิเศษนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
ปริญญาโทศึกษาศาสตรบัณฑิต
คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

พ.ศ. 2555

**SYNTHESIS AND CHARACTERIZATION OF
N-OCTYL CHITOSAN**

MISS JUTHAMAT SAE-LIM

MISS JUTHAMAS LORSUTTISATE

**A SPECIAL PROJECT SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR
THE BACHELOR DEGREE OF SCIENCE IN PHARMACY
FACULTY OF PHARMACY
MAHIDOL UNIVERSITY**

2012

โครงการพิเศษ

เรื่อง การสังเคราะห์และการพิสูจน์เอกสารกษณ์ของ *W-Octyl chitosan*

(นางสาวจุฑามาศ แซ่ลิม)

(นางสาวจุฑามาศ หล่อสุทธิ์เครช์)

(ดร. อัญชลี จินตพัฒนากิจ)
อาจารย์ที่ปรึกษา

(ดร. จิรพงศ์ สุขสวัสดิ์)
อาจารย์ที่ปรึกษาร่วม

(ผศ.ดร. กิตติศักดิ์ ศรีวิภา)
อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

การสังเคราะห์และการพิสูจน์เอกสารชีวนิชของ $\text{N}\text{-Octyl chitosan}$

จุฑามาศ แซ่ลิม, จุฑามาศ หล่อสุทธิ์เครวชูน

อาจารย์ที่ปรึกษา: อัญชลี จินตพัฒนากิจ*, จิรพงศ์ สุขสิริวงศ์*, กิตติศักดิ์ ศรีวิภา**

*ภาควิชาเคมี คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

**ภาควิชาเคมี คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

คำสำคัญ: $\text{N}\text{-Octyl chitosan}$, แอลฟ่า-ไคโตแซน, เบต้า-ไคโตแซน, reductive amination, ขีดการละลายน้ำ

โครงการพิเศษนี้มีวัตถุประสงค์เพื่อปรับปรุงสมบัติของไคโตแซนโดยการเติมหมู่ octyl ด้วยปฏิกิริยา reductive amination ได้เป็น $\text{N}\text{-Octyl chitosan}$ ที่มีปริมาณหมู่ octyl บนสายโซ่ 30, 50 และ 100% และศึกษาผลของชนิดของแอลฟ่าไคโตแซน (จากเปลือกถุง) และเบต้าไคโตแซน (จากแกนปลาหมึก) ต่อการสังเคราะห์และสมบัติของ $\text{N}\text{-Octyl chitosan}$ จากการศึกษาพบว่าสามารถติดหมู่ octyl บนสายโซ่ไคโตแซนทั้งชนิดแอลฟ่าและเบต้า ซึ่งยืนยันด้วย FT-IR สเปกตรัม ที่ตรวจพบพีคใหม่ที่ 1463 cm^{-1} ของหมู่ CH_3 และ CH_2 (C-H bending) และพีคที่ 1593 cm^{-1} (N-H bending) หายไป ขณะที่มีพีคใหม่เกิดขึ้นที่ 1541 cm^{-1} (C-H stretching) เมื่อเปรียบเทียบกับไคโตแซนตั้งต้น เมื่อตรวจวิเคราะห์ด้วยวิธี NMR พบว่าเกิดพีคใหม่ที่ 0.84 ppm แสดงถึงปรอตอนของหมู่เมทธิลและที่ $1.23-1.25 \text{ ppm}$ แสดงถึงปรอตอนของหมู่เมทธิลในสายโซ่ octyl จากการศึกษาสมบัติพบว่า $\text{N}\text{-Octyl chitosan}$ ทั้งชนิดแอลฟ่าและเบต้า มีค่าขีดการละลายน้ำเพิ่มขึ้น และมีขีดการละลายน้ำมากที่สุดเมื่อ มีปริมาณหมู่ octyl 30 และ 50% ตามลำดับ แต่เมื่อเพิ่มปริมาณหมู่ octyl บนสายโซ่ส่งผลให้ขีดการละลายน้ำลดลง ขีดการละลายน้ำของ $\text{N}\text{-Octyl chitosan}$ ชนิดเบต้า ที่มีปริมาณหมู่ octyl 50 และ 100% มีค่ามากกว่าชนิด แอลฟ่า เมื่อทดสอบสมบัติการไหลและความหนืดพบว่า $\text{N}\text{-Octyl chitosan}$ ทั้งชนิดแอลฟ่าและเบต้า มีการไหลแบบ pseudoplastic และมีความหนืดมากที่สุดเมื่อมีปริมาณหมู่ octyl 50% นอกจากนี้ยังพบว่า $\text{N}\text{-Octyl chitosan}$ ชนิดแอลฟ่าที่มีปริมาณหมู่ octyl 30 และ 50% มีความหนืดมากกว่าชนิดเบต้า

Abstract

Synthesis and characterization of *N*-Octyl chitosan

Juthamat Sae-lim, Juthamas Lorsuttisate

Project advisors : Anchalee Jintapattanakit*, Jiraphong Suksiriworapong*, Kittisak Sripha**

*Department of Pharmacy, Faculty of Pharmacy, Mahidol University

**Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University

Keyword : *N*-Octyl chitosan, α - chitosan, β -chitosan, reductive amination, water solubility

The objectives of this special project were, firstly, to modify properties of chitosan by synthesis of *N*-Octyl chitosan at 30, 50, and 100% substitutions via reductive amination and, secondly, to study the effects of α - and β -forms of chitosan (from shrimp and squid pens, respectively) on the synthesis and properties of *N*-Octyl chitosan. It was found that various amount of octyl groups was successfully substituted on both α - and β -chitosan chains. As confirmed by FT-IR, a new peak at 1463 cm^{-1} of CH_3 and CH_2 groups (C-H bending) was detected and a strong peak at 1593 cm^{-1} (N-H bending) was absent. Meanwhile, the new peak of C-H stretching occurred at 1541 cm^{-1} as compared to that of chitosan. Furthermore, NMR spectra showed the new peaks at 0.84 ppm corresponding to methyl protons and 1.23-1.25 ppm associating with methylene protons of octyl chain. From the results of solubility study, the water solubility of both α - and β -forms of *N*-Octyl chitosan increased with the initial concentration and the maximum solubility was obtained at 30 and 50% substitutions, respectively. Nevertheless, the increase of % substituted octyl group decreased the water solubility of chitosan. Moreover, the water solubility of β -form of *N*-Octyl chitosan at 50 and 100% substitutions was greater than that of α -form. For both α - and β -forms of *N*-Octyl chitosan, their rheology was pseudoplastic flow and their maximum viscosity was found at 50% substitution. The viscosity of α -form of 30 and 50% *N*-Octyl chitosans was greater than that of β -form.