

การศึกษาความสัมพันธ์เชิงวิัฒนาการของยืนที่
เกี่ยวข้องกับการทำงานของนาพิกาชีวิตของแบคทีเรีย
โดยใช้เทคนิคการสร้างแผนภูมิวิัฒนาการ

นางสาวธิดารัตน์ จันทร์
นางสาวฐุปมนี แก่นเดียว

โครงการพิเศษนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
ปริญญาโทเส้นทางบัณฑิต
คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

พ.ศ.2555

**EVOLUTIONARY STUDY OF BIOLOGICAL CLOCK
GENES IN BACTERIA BY USING MOLECULAR
PHYLOGENETIC TECHNIQUES**

**MISS THIDARAT JANTRA
MISS THOOPMANEE KAENDIAO**

**A SPECIAL PROJECT SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR
THE BACHELOR DEGREE OF SCIENCE IN PHARMACY
FACULTY OF PHARMACY
MAHIDOL UNIVERSITY**

2012

โครงการพิเศษ

เรื่อง การศึกษาความสัมพันธ์เชิงวัฒนาการของยีนที่เกี่ยวข้องกับการทำงานของนาฬิกาชีวิตของแบคทีเรียโดยใช้เทคนิคการสร้างแผนภูมิวัฒนาการ

.....
(นางสาวธิดารัตน์ จันทร์)

.....
(นางสาวฐิตปมล แก่นเดียว)

.....
(ดร.มนตรี ยะสาวงศ์)
อาจารย์ที่ปรึกษา

.....
(ผศ.ดร. วิเชษฐ์ ลีลามานิตย์)
อาจารย์ที่ปรึกษาอวam

บทคัดย่อ

การศึกษาความสัมพันธ์เชิงวิัฒนาการของยีนที่เกี่ยวข้องกับการทำงาน ของนาฬิกาชีวิตของแบคทีเรียโดยใช้เทคนิคการสร้างแผนภูมิ

วิัฒนาการ

วิภาวดีรังสิต จันทร์, คูปಮณี แก่นเดียว

อาจารย์ที่ปรึกษา: มนตรี ยะสาวงศ์, วิเชชฐ์ ลีภามานิตย์

ภาควิชาชีวเคมี คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

คำสำคัญ : Bayesian inference, circadian clock gene, *kaiA*, *kaiB*, *kaiC*, แผนภูมิวิัฒนาการ

โครงการพิเศษนี้จัดทำขึ้นเพื่อศึกษาวิัฒนาการของ circadian clock genes (CCGs) โดยทำ การศึกษา yin 3 ชนิด คือ *kaiA*, *kaiB*, และ *kaiC* ของแบคทีเรีย โดยรวมข้อมูลและรหัสพันธุกรรมของยีนเหล่านี้จากฐานข้อมูลจีโนม GenBank หลังจากนั้นจึงนำข้อมูลที่ผ่านการตรวจสอบความถูกต้องแล้วมาวิเคราะห์หาความสัมพันธ์เชิงวิัฒนาการโดยใช้เทคนิค Bayesian inference พบว่าแบคทีเรียสายพันธุ์ที่มียีน *kaiA*, *kaiB*, และ *kaiC* มีทั้งสิ้น 32, 68, และ 154 ชนิด ตามลำดับ ยีน *kaiA* พบในแบคทีเรียเพียง 2 ไฟลัมเท่านั้น คือ ไฟลัม *Cyanobacteria* และ *Euryarchaeota*, ยีน *kaiB* พบว่ามีการกระจายตัวอยู่ในหลายไฟลัมด้วยกันแต่ส่วนใหญ่พบอยู่ในไฟลัม *Cyanobacteria* และ *Proteobacteria* ยีน *kaiC* เป็นยีนที่พบมากที่สุดและส่วนใหญ่พบในไฟลัม *Proteobacteria*, *Euryarchaeota* และ *Cyanobacteria* จากการวิเคราะห์ความสัมพันธ์เชิงวิัฒนาการทำให้สามารถแบ่งกลุ่มของ CCGs แต่ละชนิดได้เป็นสองกลุ่มย่อย คือ CCGs สายสั้น และ CCGs สายยาว โดยใช้ความยาวของยีนเป็นเกณฑ์เมื่อวิเคราะห์ลำดับกรดอะมิโนของ CCGs พบว่าทุกกลุ่มมีลำดับของกรดอะมิโนอนุรักษ์ยกเว้นกลุ่มของยีน *kaiC* สายสั้นโดยกรดอะมิโนอนุรักษ์ที่พบมากในแต่ละกลุ่มคือ Glycine หรือ Lysine จากผลการทดลองข้างต้นสรุปว่าความยาวของยีน และชนิดของสิ่งมีชีวิตมีผลต่อการจำแนกกลุ่ม CCGs ในแบคทีเรีย นอกจากนี้ยังพบว่า ยีน CCGs ของแบคทีเรียบางชนิดอยู่ผิดตำแหน่งในแผนภูมิวิัฒนาการ ทั้งนี้อาจมีสาเหตุมาจากการเกิด Horizontal gene transfer

Abstract

Evolutionary study of biological clock genes in bacteria by using molecularphylogenetic techniques

Thidarat Jantra, Thoopmanee Kaendiao

Project advisor : Montri Yasawong, Wichet Leelamanit

Department of Biochemistry, Faculty of Pharmacy, Mahidol University

Keyword : Bayesian inference, circadian clock gene, *kaiA*, *kaiB*, *kaiC*, phylogenetic

This project was designed to illuminate the evolution of circadian clock genes (CCGs) in bacteria. The study was performed using three circadian clock genes, which were *kaiA*, *kaiB* and *kaiC*. The genes were collected from genome database of GenBank. After validating the data, the Bayesian inference method was applied to construct phylogenetic trees. There were 32 strains of bacteria contain *kaiA*, 68 strains contain *kaiB* and 154 strains contain *kaiC*. The *kaiA* genes were found only in two phyla, which were *Cyanobacteria* and *Euryarchaeota*. The *kaiB* genes were most found in phyla *Cyanobacteria* and *Proteobacteria*. The *kaiC* genes were the most abundance in bacteria and found in phyla *Proteobacteria*, *Euryarchaeota*, and *Cyanobacteria*. Each group of CCGs were divided in two subgroup (short length and long length) based on theirs length and phylogenetic classification. Amino acid sequences of CCGs showed the conserved region, which contained Glycine or Lysine. However, there was only one group of CCGs (short length *kaiC* gene) representing no conserved region. In conclusion, the length and the species of bacteria are the major factors that influence the classification of CCGs. Nevertheless, few CCGs, which might come from the horizontal gene transfer, were located in the wrong position in phylogenetic tree.