

การสังเคราะห์อนุพันธ์ของอินโดเมต้าซิน  
เพื่อประเมินผลการลดแอมีโลยด์เบต้า (A $\beta$ ) พลากส์

นางสาว สาวิณี โชคเฉลิมวงศ์  
นางสาว สโตรชิน สันติวรางกูร

โครงการพิเศษนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร  
ปริญญาตรีเภสัชศาสตรบัณฑิต  
คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล  
พ.ศ. 2553

**SYNTHESIS OF INDOMETHACIN ANALOGUES FOR  
EVALUATION AS AMYLOID-BETA (A $\beta$ ) PLAQUES  
LOWERING**

MISS SAWINEE CHOKCHALERMWONG  
MISS SAROCHIN SANTIWARANGKOOL

A SPECIAL PROJECT SUBMITTED IN PARTIAL FULFILMENT  
OF THE REQUIREMENTS FOR  
THE BACHELOR DEGREE OF SCIENCE IN PHARMACY  
FACULTY OF PHARMACY  
MAHIDOL UNIVERSITY

โครงการพิเศษ

เรื่อง การสังเคราะห์อนุพันธ์ของอนีเดเมทาซิน

เพื่อประเมินผลการลดแอมีลอยด์เบต้า (A $\beta$ ) พลางส์

(นางสาวสาวิกา โชคเฉลิมวงศ์)

(นางสาวสิริชิน สนันติราวงศ์)

(ผศ.ดร.กิตติศักดิ์ ศรีวิภา)

อาจารย์ที่ปรึกษา

## บทคัดย่อ

### การสังเคราะห์อนุพันธ์ของอนิดเมทาซิน

### เพื่อประเมินผลการลดแอมีโลยด์เบต้า (A $\beta$ ) พลาสต์

สาวนี โชคเฉลิมวงศ์, สโตริน ลันติรางกูร

อาจารย์ที่ปรึกษา : กิตติศักดิ์ ศรีวรา\*

\* ภาควิชาเคมี คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

คำสำคัญ : indomethacin, แอมีโลยด์เบต้า (A $\beta$ ) พลาสต์, ยับยั้งการเกะกะกลุ่ม, ตือกging

โครงการพิเศษนี้มีวัตถุประสงค์เพื่อสังเคราะห์และออกแบบโครงสร้างอนุพันธ์ของ indomethacin ตัวใหม่ ซึ่งมีประสิทธิภาพยับยั้งการเกะกะกลุ่มแอมีโลยด์เบต้า (A $\beta$ ) พลาสต์ อนุพันธ์ esters และ amide ถูกสังเคราะห์ด้วยปฏิกิริยา acid-catalyzed esterification และ coupling reaction ซึ่งใช้ conc. $H_2SO_4$  และ DCC, DMAP เป็นตัวเร่งปฏิกิริยาตามลำดับ % Yield ของ อนุพันธ์ methyl ester, ethyl ester, phenyl ester และ N-phenyl amide เท่ากับ 72, 72, 86 และ 23 ตามลำดับ นอกจากนี้ยังเตรียมอนุพันธ์ของ indomethacin โดยใช้ปฏิกิริยา reduction ด้วย LiAlH<sub>4</sub> อย่างไรก็ตามภายใต้สภาวะการทำปฏิกิริยาดังกล่าวไม่เกิดอนุพันธ์รูป reduced ของ indomethacin แต่พบว่าพันธะเอไมด์แตกออกได้ส่วนของ indole (5-methoxy-2-methyl indole-3 acetic acid) และ p-chlorobenzaldehyde การพิสูจน์เอกสารชณ์ของโครงสร้างสารที่สังเคราะห์ได้ทำโดยเทคนิค FT-IR, LC-MS และ <sup>1</sup>H-NMR การทดสอบฤทธิ์ต้านการเกะกะกลุ่มของ A $\beta$  พลาสต์ ใช้วิธี Thioflavin T assay โดยเปรียบเทียบกับ indomethacin และ curcumin จากการทดลองพบว่าอนุพันธ์ esters และ amides ไม่แสดงฤทธิ์ดังกล่าว ขณะที่ 5-methoxy-2-methyl indole-3 acetic acid ออกฤทธิ์ยับยั้งดี (88 %) ที่ความเข้มข้น 150  $\mu$ M นอกจากนี้ยังมีการออกแบบอนุพันธ์ของ indomethacin ตัวใหม่ด้วยวิธี molecular docking โดยวัดโครงสร้างอนุพันธ์ด้วยโปรแกรม SYLBYL 8.1 และ ตือกgingโครงสร้างกับ A $\beta$ <sub>25-35</sub> (pdb code: 1QWP) ด้วยโปรแกรม Autodock 4.0 พบรากการเปลี่ยน carbonyl group ซึ่งอยู่ระหว่าง aromatic และ indole ring ของ indomethacin ด้วยหมู่ thiol (Compound 6) ให้ค่า binding energy ต่ำสุดที่ -7.43 kcal/mol และมีค่า inhibition constant ที่ 3.56  $\mu$ M ในอนาคตสารดังกล่าวจะถูกสังเคราะห์และนำไปศึกษาฤทธิ์ต้านการเกะกะกลุ่มของ A $\beta$  พลาสต์ต่อไป

## Abstract

### Synthesis of indomethacin analogues for evaluation as amyloid-beta (A $\beta$ ) plaques lowering

Sawinee Chokchalermwong, Sarochin Santiwarangkool

Project advisor : Kittisak Sriphap\*

\* Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University

**Keyword** : Indomethacin, Amyloid-beta (A $\beta$ ) plaques, Anti-aggregation, Molecular docking

The purpose of this work aimed to synthesize and design new indomethacin derivatives as potential of anti-A $\beta$  plaques formation. Ester and amide derivatives were synthesized by acid-catalyzed esterification, using conc. H<sub>2</sub>SO<sub>4</sub> and coupling reaction, using DCC and DMAP as the catalysts, respectively. % Yield of obtaining synthesized indomethacin derivatives, i.e., methyl ester, ethyl ester, phenyl ester, *N*-phenyl amide were 72, 72, 86, and 23, respectively. Reduction of indomethacin by LiAlH<sub>4</sub> was additionally investigated. Unfortunately, no reduced form of indomethacin was achieved. Under our reduced conditions, the amide bond was broken to give indole part (5-methoxy-2-methyl indole-3 acetic acid) and *p*-chlorobenzaldehyde. Identification of the all synthesized structures was characterized by FT-IR, LC-MS, and <sup>1</sup>H-NMR. The anti-A $\beta$  plaques formation could be tested by Thioflavin T assay comparing with indomethacin and curcumin and it was found that the ester and amide derivatives of indomethacin exhibited no activity whereas indole part showed a good inhibitory activity (88%) at 150  $\mu$ M. Furthermore, a molecular docking was employed to design new indomethacin derivatives. All desired structures were drawn by SYBYL 8.1 and docked with A $\beta$ <sub>25-35</sub> (pdb code: 1QWP) by using Autodock 4.0. It was noticed that replacing of carbonyl group between aromatic and indole ring of indomethacin with thiol group (Compound 6) showed the lowest binding energy at -7.43 kcal/mol. This compound will be investigated for the anti-A $\beta$  plaques formation.