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1. INTRODUCTION 

 

 Diabetes mellitus is a common chronic disease 

worldwide with the high levels of blood glucose in the 

body. So far, there have been multiple drug classes used 

for the treatment of diabetes, such as insulin or inhibitors 

of alpha-glucosidase (acarbose, miglitol), biguanides 

(metformin), dipeptidyl peptidase-4 (alogiptin, linagliptin), 

sulfonylureas (glimepiride, gliclazide, glipizide, glyburide, 

etc), thiazolidinediones (rosiglitazone, pioglitazone), 

glucagon-like peptide 1 (GLP-1) receptor agonists 

(dulaglutide, semaglutide), etc1. However, most 

antidiabetic drugs are associated with significant adverse 

effects: insulin and sulfonylureas can cause 

hypoglycemia and weight gain; metformin may lead to 

gastrointestinal disturbances and a risk of lactic acidosis; 

GLP-1 receptor agonists and alpha-glucosidase 

inhibitors often cause gastrointestinal side effects, etc1. 

These adverse effects may impact treatment outcomes 

and should be carefully considered when selecting 

appropriate therapeutic regimens. 

 SLGT inhibitors (Figure 1) were approved as a 

new class of glucose-lowering agents, including selective 
SGLT2 inhibitors (based on the C-glycosylated 
diarylmethane pharmacophore) like canagliflozin, 
empagliflozin, dapagliflozin, ertugliflozin, exagliflozin; 
and inhibitors of both SGLT1 and SGLT2(dual 

inhibitors) like sotagliflozin1. Among these, sotagliflozin 

stands out due to its dual mechanism of action, inhibiting 

both SGLT2 in the kidneys and SGLT1 in the intestines. 

This dual inhibition not only reduces renal glucose 

reabsorption,  intestinal  glucose  absorption  leading  to 
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ABSTRACT 

 

 Dual inhibitors of both sodium-glucose cotransporters (SGLT1 and 2) is of great interest due to combination 

of blocking renal SGLT2 as well as intestinal SGLT1 leading to decreases of glucose absorption and HbA1C and 

also increase of GLP-1 and beneficial effect on cardiovascular system1. Thus, this study aimed to explore 

potential natural drugs targeting both SGLT1 and SGLT2 proteins for the treatment of type 2 diabetes. The 

screening process through combining pharmacophore models drived from molecular dynamics simulations 

(MDs) and molecular docking for both structures of SGLT1 (PDB: 7WMV) and SGLT2 (PDB: 7VSI) were 

successfully applied. Seven potential natural dual SGLT1 and SGLT2 inhibitors were obtained including 

neodiosmin, apigenin-7-O-neohesperidosid, neobudoffieid, pinoresinol diflucosid, hispidulin-7-O-rutinosid, 

apigenin-7-O-rutinosid, syringaresinol-4-O-β-D-glucopyranosid). They satisfied the five features of two 

pharmacophore models for SGLT1 and SGLT2 proteins for their inhibitory bioactivities. Docking results showed 

that they fitted well in the binding sites of both proteins by forming key interactions similar to a reference dual 

inhibitor, sotagliflozin with their binding affinities ranging from -10.07 to -13.67 kcal.mol-1 for SGLT1 and from 

-10.56 to -13.90 kcal.mol-1 for SGLT2. Further experimental assays are required for testing bioactivities of these 

seven compounds as dual SGLT1 and 2 inhibitors. 
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lower HbA1c and enhances endogenous GLP-1 

secretion but also provides additional cardiovascular 

effects2. Moreover, compared to selective SGLT2 

inhibitors such as canagliflozin, it has shown a lower 

risk of bone fractures, amputations, and urinary tract 

infections2. However, sotagliflozin presents several 

notable limitations, including an increased risk of 

diarrhea and hypotension3. Therefore, the search for 

novel compounds capable of dual SGLT1/SGLT2 

inhibition with reduced side effects represents a 

promising research direction to enhance therapeutic 

efficacy and improve safety. 

 Currently, natural products are often used as lead 

compounds to design and synthesize novel drugs 

targeting both SGLT1 and SGLT2 proteins. These 

compounds are generally fewer gastrointestinal side 

effects (such as diarrhea, dehydration, and 

malabsorption) due to their typically moderate inhibitory 

activity4. Therefore, exploring natural products that act as 

dual inhibitors of SGLT1 and SGLT2 is considered a 

promising strategy to discover novel structural scaffolds 

for semisynthetic drug development and to reduce 

undesirable side effects in clinical.  

 Many natural compounds were isolated and 

tested for in vitro inhibitory bioactivity on SGLT1 and 

SGLT25 such as: (−)−kurarinon in Sophora flavescens, 

Fabaceae (IC50 SGLT1 = 10.4 µM, IC50 SGLT2 = 1.7 

µM)5 and sophoraflavanon G (IC50 SGLT1 = 18.7 µM, 

IC50 SGLT2 = 4.1 µM)2, 10-Methoxy-N(1)-

methylburnamin-17-O-veratrat (IC50 SGLT1 = 4.0 µM, 

IC50 SGLT2 = 0.5 µM and Alstiphyllanin D (IC50 

SGLT1 = 5.0 µM, IC50 SGLT2 = 2.0 µM) in Alstonia 

macrophylla, Apocynaceae5, etc. However, there are 

still not available natural drugs in the market as dual 

inhibitors for SGLT1 and SGLT2. 

 To accelerate the drug discovery process and 

reduce time and cost, in silico approaches have been 

increasingly applied in the research of antidiabetic 

agents targeting both SGLT1 and SGLT2. Some 

common techniques, molecular docking and molecular 

dynamics simulations and pharmacophore modelling 

are often used to achieve the success. Some potential 

natural compounds were identified such as 

bavachromanol in Psoralea corylifolia, Fabaceae fitting 

well in SGLT1 and SGLT2 with good binding 

affinities6; trilobatin derived from Lithocarpus 

polystachyus, Fagaceae showing its binding affinities 

similar to phlorizin towards both SGLT1 and SGLT2 

proteins7; 14-Dexo-14-O-acetylorthosiphol Y from 

Orthosiphon stamineus Benth binding well with SGLT1 

and SGLT2 protein considered as a potent anti-diabetic 

drug8, etc. Although the available X-ray crystal 

structures of SGLT1 and SGLT2 provide valuable static 

snapshots of protein-ligand interactions, they represent 

only a single conformation and may not fully reflect the 

dynamic nature of the binding sites. Therefore, we 

employed a molecular dynamics (MD)-based pharma- 

cophore modeling approach to better account for protein 

flexibility and binding pocket dynamics. This strategy 

offers a more realistic basis for pharmacophore 

generation and virtual screening9. While in silico 

methods such as molecular docking and MD simulations 

have been applied previously, the integration of MD- 

derived conformations into pharmacophore modeling

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. SGLT1 inhibitors and dual SGLT1 and SGLT2 inhibitors 
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remains limited, particularly in the context of dual 

SGLT1 and SGLT2 inhibitor discovery. Some recent 

studies have demonstrated that combining MD 

simulations with pharmacophore modeling can 

significantly improve the screening performance and 

enrich the identification of active compounds10,11. 

 In this study, the objective was to explore 

potential natural dual inhibitors of SGLT1 and SGLT2. 

The novelty of this study lies in the hypothesis that 

representative conformations extracted from molecular 

dynamics (MD) simulations provide a more accurate 

basis for pharmacophore model generation compared to 

the conventional single-structure approach. Therefore, 

this study focused on application of molecular dynamics 

simulations (MDs) in generation of pharmacophore 

models more accurately compared to the common 

approach for inhibitors of both SGLT1 and SGLT2 

using their PDB structures (SGLT1 with PDB ID: 

7WMV and SGLT2 with PDB ID: 7VSI). Through 

cluster analysis, representative conformational 

structures obtained from MDs showed more advantages 

in generation of pharmacophore models. Subsequently, 

virtual screening using pharmacophore models and 

induced-fit molecular docking were carried out to 

identify potential natural compounds from our in-house 

database. Further biological testings are required to 

confirm bioactivities of these compounds as dual 

SGLT1 and SGLT2 inhibitors. 

 

2. MATERIALS AND METHODS 

 

2.1. Protein preparation 

 

 The structures of SGLT1 and SGLT2 were 

retrieved from Protein Data Bank (https://www.rcsb.org/) 

with the human SGLT1 (PDB code: 7WMV12, its 

resolution of 3.20 Å) in complexed  the co-crystallised 

ligand LX2761 as the selective inhibitor of SGLT1 and 

SGLT2 (PDB code: 7VSI13, its resolution of 2.95 Å) 

complexed with empagliflozin as the selective inhibitor 

of SGLT2. 7WMV12 is the tructure of human SGLT1-

MAP17 complex bound with LX2761 and 7VSI13 is 

Structure of human SGLT2-MAP17 complex bound 

with empagliflozin7. 

2.2. Database for screening 

 

 In-house phytochemical database includes 

274 natural products which were collected from 

Faculty of Pharmacy at University of Medicine and 

Pharmacy at Ho Chi Minh city in Viet Nam 

(Supplementary material). 

 

2.3. Molecular dynamic simulations   

 

 MDs aimed to investigate the fluctuation of 

protein structure during simulations as well as to 

select the representative equilibrium conformations 

of structures for pharmacophore model generations. 

MDs were conducted for both SGLT1 (PDB ID: 

7WMV) and SGLT2 (PDB ID: 7VSI) proteins for 200 

ns using GROMACS 2023.2 software14 and employing 

the CHARMM27 force field15. Subsequently, cluster 

analysis was carried out for choosing the representative 

structural conformations of SGLT1 and SGLT2, 

pharmacophore models for SGLT1 and SGLT2 inhibitors, 

respectively were developed by MOE version 2022.0216.  

 Solvent and co-crystallised ligands were 

removed from the structures of SGLT1 and SGLT2. 

Ligands were protonated and added hydrogen atoms 

using the UCSF Chimera 1.1617 and then parameterized 

using the SwissPARAM18 server (https://www. 

swissparam.ch/). MDs were run for both complexes of 

SGLT1 and SGLT2 with the co-crystallised ligands and 

the apo-proteins for 200 ns. Each ligand–protein 

complex, along with the corresponding apo form, was 

solvated in a cubic dodecahedron box using the TIP3P 

water model and neutralised by adding 4 Cl- ions for 

SGLT1 and 7 Cl- ions for SGLT2, respectively. Energy 

minimization ran using the steepest descent algorithm. 

System equilibration was conducted in two phases: a 

constant-volume (NVT) phase and a constant-pressure 

(NPT) phase, each lasting 100 ps. Subsequently, 200 ns 

production MD simulations were run for each system. 

The simulation setup and key parameters are 

summarised in Table 1 below. 

 Production stage were run with a timestep of 2 

fs after achieving the equilibrium. The MDs trajectories 

were recorded every 0.01 ns and visualized using the
 

Table 1. Summary of Molecular Dynamics Simulation Parameters 

 

Stage Parameter 

Force field CHARMM27 

Simulation software GROMACS 2023.2 

Water model TIP3P 

Box type Cubic dodecahedron 

System neutralization 4 Cl⁻ (SGLT1), 7 Cl⁻ (SGLT2) 

Energy minimization Steepest descent algorithm 

Equilibration NVT: 100 ps at 300 K 

NPT: 100 ps at 1 atm 

Production run 200 ns 

 

https://www.rcsb.org/
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VMD 1.9.4 program19. Criteria parameters for MDs 

included the values of RMSD (root-mean-square 

deviation), RMSF (root-mean-square fluctuation), Rg 

(radius of gyration), and SASA (solvent accessible 

surface area) of the protein backbone or the heavy atoms 

of the ligands during the MDs. Furthermore, the 

hydrogen bonds were determined to occur if the 

bonding angle between the hydrogen donor (D) and 

acceptor (A) larger than 120o with the distance between 

D and A exceeding 3.5 Å. 

 

Cluster analysis 

 

 Clustering methods have been widely used in 

MDs to group similar conformational structures from 

the trajectories of MDs.  

 In this study, the neighbor-based algorithm20 

was chosen as the clustering algorithm. This clustering 

process included many steps as followings20: 

- Step 1: the values of RMSD of atoms positions 

between all pairs of conformational structures were 

calculated. 

- Step 2: every conformation was counted for the 

number of neighbor conformations around this 

beginning conformation within the values of RMSD.  

- Step 3: The conformations with the highest number 

of adjacent conformations was selected as the 

center of cluster and forming the cluster containing 

all the adjacent conformations. The conformation 

of this cluster was then removed out of the pool of 

structures of conformations.  

- Step 4: The process was repeated until all of the 

conformations were arranged into the cluster and 

the pool of the conformations were empty. 

Clustering analysis: Clustering analysis was performed 

based on the value of RMSD using the stable 

conformational structures. Subsequently, the module 

gmx_cluster was used for clustering every 0.01 ns and 

determining the representative conformations. 

 

Criteria for cluster evaluations 

 

 The value of optimized cut-off was the 

important criteria to ensure the clustering analysis 

correctly and meaningfully. The value of the optimized 

one must have the number of the managed cluster (not 

devided the conformations into many clusters), must 

have the large number of similar conformations grouped 

into the smaller cluster and minimized the number of 

clusters possessing one conformation. Thus, the cut-off 

was chosen which satisfied three criterion as 

followings21: the first cluster has at least 70% 

conformations; the total of first ten clusters must have 

at least 80% of all formed conformations; and each 

cluster of the first ten clusters must have at least 20 

conformations. With the criteria, RMSD cutoff was 

chosen of 1.15 Å for SGLT1 and of 1.25 Å for SGLT2. 

The representative conformations of more than 80% of 

all the formed conformations were exported and used 

for pharmacophore generation. 

 

2.4. Structure-based pharmacophore models derived 

from MDs 

 

Pharmacophore model generation 

 

 Pharmacophore models were generated from 

the results of MDs after selecting the representative 

conformations of structures of SGLT1 and SGLT2 by 

using MOE software. Furthermore, structure-based 

pharmacophore models using the experimental crystal 

structures of SGLT1 (PDB ID: 7WMV) and SGLT2 

(PDB ID: 7VSI) which retrieved from Protein data bank 

were also constructed to compare each other.  

 Energy minimization for all conformations of 

the compounds was conducted by using the 

Conformation Import tool. Pharmacophore Elucidation 

tool was used for generation of a 3D-pharmacophore 

model, and the Pharmacophore Search for Criteria was 

for assessment process. Initially, the conformations 

representated from MDs were inputed in the MOE and 

then they were prepared by removing water, 

protonization and also modification of the structure and 

energy minimization. The conformations were then 

aligned and arranged by the tool Align/Superpose and 

Pocket Residues was used to priority arrangement of 

amino acids at the locations of binding sites.  

 Pharmacophore model was generated from the 

all of representative conformations using the tool 

Pharmacophore Consensus in the MOE program with 

the distance of tolerance of 1.2 Å and the threshold22 

of 50%. This tool automatedly suggested the common 

characteristics of all the conformations ensuring the 

distance from the common characteristic to the confor- 
 

Table 2. Key features related to inhibitory bioactivities of SGLT1 and SGLT2 

 

SGLT1 SGLT2 

Hydrogen bonds12 forming from C2-OH, C3-OH glycosid of ligand 

with Asn78, Phe101, Glu102, Trp291, Lys321 

π-π (stacking)12 with His83 

Hydrophobic interactions12 with Ile98, Phe101 

Amid-π interactions12 with Asp454; Leu274, Asp454 or 

hydrophobic interactions between methylsulfanyl group with 

Met283, Thr460 (regarding to biological acitivty with SGLT1) 

Hydrogen bonds13 forming from C2-OH, C3-OH glycosid of ligand 

with Asn75, Phe98, Glu99, Trp291, Lys321 

π-π (stacking)13 with His80 

π-π (T-shape)13 with Phe98 and hydrophobic interactions with 

Leu84, Val95, Phe453 

Hydrophobic interactions13 with Phe98, Leu274 
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Table 3. Testing database for SGLT1 and SGLT2.  
 

Number of compounds in the testing database SGLT1 SGLT2 

Number of active compounds  60 (IC50  ≤ 1 μM)  332 (IC50  ≤ 100 nM) 

Number of inactive 

compounds 

Based on IC50 107 (IC50  > 1 μM)  103 (IC50  > 1 μM) 

Using DUD-E 556 750 

Total of inactive compounds 663 853 

 

mational charactetristic of not more than 1.2 Å and the 

common characteristic representing for more than 50% 

the characteristics of conformations. Among the 

forming common characteristics, some have inhibitory 

bioactivity effects on both SGLT1 and SGLT2 (Table 

2). Moreover, hydrogen bonds had the high occupancy 

during MDs were selected for generation of 

pharmacophore models based on default settings. 

 

Pharmacophore model validation 

 

 Two pharmacophore models were evaluated 

through using testing database by the criteria such as 

accuracy, overlap, sensitivity (Se), and specificity (Sp), 

precision (Acc), Güner-Henry score and enrichment 

factor. If a greater number of active substances satisfy 

the model, the model's reliability increases, and vice-

versa. The test set was evaluated based on the two 

pharmacophore models, including the active and 

inactive test datasets23-52 (Table 3).  

 The inactive dataset included the compounds 

posessing the IC50 values and decoy compounds 

belonging to DUD-E53. The values of IC50 of 

compounds targeting SGLT1 and SGLT2 were 

collected23-52 and converted in terms of a reference 

compound, sotagliflozin (SGLT1: the IC50 = 34.6 nM 

and SGLT2: the IC50 = 1.5 nM)40.  To perform the 

conversion, a threshold is established using the IC₅₀ of 

the reference compound. Compounds with IC₅₀ values 

equal to or lower than that of the reference are classified 

as active, while those with higher IC₅₀ values are 

considered inactive. The IC50 values of compounds in 

the test set were determined through in vitro testing for 

inhibitory ability of absorption of [14C] methyl D-

glucopyranoside (AMG) in Chinese hamster (CHO) or 

monkey kidney cells (COS) expressing on human 

SGLT1 and SGLT2. 

Low conformations of the compounds in test set 

were constructed using Conformation Import in the 

MOE with below settings54: Conformation: 10000; 

Descriptor Filter: Clear; Stochastic Search Iteration 

Limit): 1000; Energy Minimization Iteration Limit: 

1000; Energy Minimization Gradient Test: 0,0001.  

 

2.5. Virtual screening  

 

 Pharmacophore Search in the MOE was used 

for screening process with the database of 274 

compounds by the two generated pharmacophore 

models. All compounds were energy minimized and 

their conformations were generated prior to screening.  

The compounds satisfied both these pharmacophore 

models were chosen for further docking.  

 

2.6. Molecular docking 

 

 MOE software was used for redocking and 

docking, with scores calculated using the London dG 

scoring function. 

 

Redocking 

 

 Redocking was conducted for the complexes of 

SGLT1 and SGLT2 obtained from clustering analysis of 

MDs results to evaluate the reproducability of binding 

interactions as well as to compare to the redocking 

results of the initial structures from the PDB (PDB 

codes of SGLT1: 7WMV and SGLT2: 7VSI). 

Redocking criteria were docking scores (kcal.mol-1), 

binding interactions with RMSD values < 2 Å ligand 

after docking and the initial ligand. 

 The representative conformations of the first 

cluster on the two targets were the input imported into 

the MOE. Using Sequence Editor to remove the ligand 

and solvents and using Protonate 3D in the MOE to 

protonate the structures of SGLT1 and SGLT2 in the 

condition of pH = 7.5 and T = 300 K were conducted. 

The Ligand Atom was used instead of Site Finder in the 

MOE to define the binding sites of SGLT1 and SGLT2 

with the pocket sizes of 235 Å3 and 115 Å3, respectively.  

 

Docking 

 

 The ligands for screening from the 

pharmacophore models were imported and energy 

minimized and also added hydrogens using Energy 

Minimized with the Gradient of 0.0001.  Induced-Fit 

Docking was conducted through using developed 

pharmacophore models and the Dock MOE was used for 

docking with the default parameters, as followings: 

Receptor: MOE; Site: Dummy Atoms; Placement: 

Pharmacophore – Timeout (Second): 3600; Number of 

Return Poses: 50000; Refinement: Induced Fit – Side 

chains: Free. The docking was also conducted for the 

reference compound, sotagliflozin (a dual inhibitor of 

SGLT1 và SGLT2) with the same parameters. Docking 

criteria included docking score (kcal.mol-1), binding 

interactions, in particular binding interactions with the 
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Figure 2. RMSD plots of backbone proteins in the apo structure and complex with the co-crystallised ligands: (a) SGLT1 (PDB code: 7WMV) 

and (b) SGLT2 (PDB code: 7VSI) during 200 ns of MDs. 
 

key residues of the structures of SGLT1 and SGLT2. 

The compounds were evaluated the absorption-

delivery-metabolism-excretion and toxicity (ADMET) 

using SwissADME (http://www.swissadme.ch/) with 

the parameters such as logP, logS, Lipinski’s rule of five 

and toxicity. 

 

3. RESULTS AND DISCUSSION 
 

3.1 Pharmacophore model generations derived from 

MDs 

 

 Structure-based pharmacophore models, one of 

the common in silico techniques play important roles in 

drug discovery. Traditionally, structure-based 

pharmacophore models rely on the initial structure of 

protein target taken from Protein data bank. However, 

there are some concerns which affects the protein 

structure such as static structure, the co-crystallised 

ligand, non-physiological contacts between protein and 

ligand, solvent effects, etc. Thus, the correct structure of 

protein-ligand complex could be obtained by refinement 

process using molecular dynamics simulations. Based on 

the movements of protein or complex of protein-ligand 

during the MDs trajectory, the important protein-ligand 

interactions for dynamic structure were obtained for 

generating pharmacophore models. Pharmacophore 

derived from MDs structure of a protein-ligand complex 

ensures covering all dynamic of features patterns of 

structure. 

 In this study, pharmacophore models were 

developed from cluster analysis of structures taken from 

MDs and also compared with the corresponding 

pharmacophore models generated from the initial 

experimental protein–ligand structure retrieved from PDB. 

 MDs results: During 200 ns MDs, the co-

crystallised complexes of SGLT1 and SGLT2 with their 

ligands shown to be stable by the evaluation of parameters 

including RMSD, RMSF, Rg and SASA. The RMSD 

plots in Figure 2 demonstrated the complexes of SGLT1 

and SGLT2 with their co-crystallised ligands as well as 

the apo proteins (free ligands) reached a stable plateau 

quickly after 1 ns of MDs (RMSD < 2 Å). This rapid 

attainment of equilibrium indicated the structural 

stability of both the apo-protein and complex structures 

within the simulated environment. Furthermore, it 

suggested that the interactions between the protein and 

the co-crystallized ligand were robust and capable of 

maintaining the essential structural features of the 

complex, thereby enabling the selection of stable protein

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. RMSF plots of the apo protein and the complexes with the co-crystallised ligands: (a) SGLT1 (PDB code: 7WMV) and (b) SGLT2 

(PDB code: 7VSI). 

http://www.swissadme.ch/
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Figure 4. Rg and SASA plots of the apo protein and the complex with the co-crystallised ligand: (a) and (c): Rg and SASA values of SGLT1 

(PDB code: 7WMV); and (b) and (d) Rg and SASA values of of SGLT2 (PDB code: 7VSI). 

 

conformations for both therapeutic targets. This stability 

was further corroborated by the subsequent analyses of 

RMSF, Rg, SASA, and Percentages of hydrogen bond 

occupancy." Furthermore, it suggested that the 

interactions between the protein and the co-crystallized 

ligand were robust and capable of maintaining the 

essential structural features of the complex, thereby 

enabling the selection of stable protein conformations 

for both therapeutic targets. This stability was further 

corroborated by the subsequent analyses of RMSF, Rg, 

SASA, and percentages of hydrogen bond occupancy. 

 For flexibility of each residue, in both structures 

of SGLT1 and SGLT2, the values of RMSF of the Cα 

atoms of all of the acid amines at the binding pocket of 

these structures were lower than the values in the apo 

forms (Figure 3). That means the SGLT1 and SGLT2 

were stable during 200 ns of MDs after binding ligands. 

 The values of Rg of the apo protein and the co-

crystallised complex structures of SGLT1 và SGLT2 

showed these structures were stable within 2.45 nm 

(Figure 4). In both structures of SGLT1 and SGLT2, the 

SASA values of the apo-protein and the complexes 

ranged from 258 nm² and 253.5 nm² for SGLT1 and 

246.8 nm² và 242.8 nm² for SGLT2 (Figure 4). 

 Percentages of hydrogen bond occupancy of 

protein-ligand interactions during MDs were also 

calculated. For SGLT1, the co-crystallised ligand 

formed many hydrogen bonds with the amino acid 

residues of the binding site such as Glu102 at carbonyl 

group (with percentage of 90.64% at C3-OH and 

41.48% at C2-OH) as well as hydroxyl group (with 

percentage of 34.91% at C2-OH và 23.09% at C3-OH). 
 These interactions were compatible with the 

key binding interactions regarding the inhibitory 

activity of SGLT1. However, the native ligand in the 

crystal complex structure, LX2761 also interacted with 

SGLT1 by hydrogen bonds with the high occupancy at 

Ser94 (81.23%) and Thr287 (69.89%) (Table 4).  

 For SGLT2, similar to LX2761, the co-

crystallised ligand, empagliflozin also bonded many 

hydrogen bonds with high occupancy at C2-OH and C3-

OH glycosid of empagliflozin with Asn75 (71.33%),
 

Table 4. Percentages of hydrogen bond occupancy of the co-crystallised ligand with the residues of the structure of SGLT1 (PDB code: 7WMV). 

 

No. 
Hydrogen bond Percentage of hydrogen bond 

occupancy (%) Donor Acceptor 

1 Ligand-Side Glu102-Side 378.52 

2 Lys321-Side Ligand-Side 182,33 

3 Ser94-Side Ligand-Side 144.49 

4 Ligand-C4 (-OH) Thr287 (-OH) 95.21 

5 Ligand-Side Lys321-Side 75.95 
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Table 5. Percentages of hydrogen bond occupancy of the co-crystallised ligand with the acid amines of the structure of SGLT2 (PDB code: 7VSI). 

 

No. 
Hydrogen bond 

Percentage (%) 
Donor Acceptor 

1 Lys321-Side Ligand-Side 146.61 

2 Ligand-Side Asn75-Side 71.81 

3 Ligand-Side Glu99-Side 65.77 

4 Ligand-Side Phe98-Main 53.67 

5 Ligand-Side Lys321-Side 53.49 

6 Asn75-Side Ligand-Side 50.08 

 

Glu99 (56.64%) and Phe98 (51.08%) of SGLT2 (Table 

5. Percentages of hydrogen bond occupancy of the co-

crystallised ligand with the acid amines of the structure 

of SGLT2 (PDB code: 7VSI). 

 

Cluster analysis 

 

 Clustering analysis was conducted to identify the 

representative conformations for SGLT1 và SGLT2 

using the equilibrium structure with the values of RMSD 

of backbone from 1 ns to 200 ns and the conformations 

were saved every 0.01 ns. The conformations of SGLT1, 

SGLT2 were devided into 17 clusters and 20 clusters, 

respectively. Of which, 4 first clusters of SGLT1 and 

SGLT2 contains 86.51% and 81.33% (> 80%) over all 

the conformations, respectively (Figure 5). As the results, 

4 conformations representating for each clusters of 

SGLT1 and SGLT2 were extracted and compared with 

the original profile presented in Figure 6 and Figure 7. 

 For SGLT1, in conjunction with the hydrogen 

bond occupancy results (Table 4), the initial hydrogen 

bonds particularly those with Glu102 and Lys321 were 

consistently maintained across most of the representative 

conformations from the four MD clusters. These 

interactions have previously been associated with 

enhanced binding affinity toward SGLT1. Notably, 

additional hydrogen bonds emerged and were stably 

maintained during simulations, such as the interaction 

with Ser94, which appeared in all four clusters, and with 

Thr287, observed in three out of four clusters. These 

newly identified interactions, revealed through molecular 

dynamics simulations, suggested their potential role in 

stabilizing the ligand–protein complex and contributing 

to the inhibitory activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Representative conformations for 4 clusters with cluster 1 (A), cluster 2 (B), cluster 3 (C) and cluster 4 (D) of the SGLT1 (blue color) 

and SGLT2 (orange color). 
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Figure 6. Comparison of interactions between the initial conformation SGLT1 (A) and the representative conformations SGLT1 for Cluster 1 

(B), Cluster 2 (C), Cluster 3 (D), Cluster 4 (E). In which, hydrogen bonds were marked green, π-π interactions were marked purple/pink, π -

sulfur interactions were marked yellow 

 

 For SGLT2, based on the hydrogen bond 

occupancy analysis (Table 5), the typical hydrogen bonds  

involving key residues such as Asn75, Phe98, Glu99, and 

Lys321 were consistently maintained with high 

occupancy and observed across all four representative 

conformations from the MD-derived clusters. These 

interactions had been reported to play crucial roles in 

stabilizing the ligand within the binding pocket and 

locking the active conformation of SGLT2, thereby 

preventing glucose reabsorption. 
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SGLT2 

A. Intital ligand 

 

 

 
B. Cluster 1 

 

 

 
C. Cluster 2 

 

 

 
D. Cluster 3 

 

 

 
E. Cluster 4 

 

 

 
 

Figure 7. Comparison of interactions between the initial conformation SGLT2 (A) and the representative conformations SGLT2 for Cluster 1 

(B), Cluster 2 (C), Cluster 3 (D), Cluster 4 (E). In which, hydrogen bonds were marked green, π-π interactions were marked purple/pink, π -

sulfur interactions were marked yellow 

 



Pharmaceutical Sciences Asia 

 
406 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 8. MD-derived pharmacophore model for SGLT1 (S1-MD), including: (A) pharmacophore model within the binding pocket; (B) 

pharmacophore model overlaid with ligand conformations from the four representative MD clusters; (C) refined pharmacophore model 

consisting of three essential features and two constraint features selected from five identified pharmacophoric features. The light pink sphere 

represented hydrogen bond donors/acceptors, purple spheres indicate hydrogen bond donors, light blue spheres was hydrogen bond acceptors, 

green spheres represented hydrophobic features, and orange sphere corresponded to aromatic ring features. 
 

Pharmacophore generation derived MDs 

 

 With four representative conformations for 

each structure of SGLT1 and SGLT2 obtained from MD 

simulations, pharmacophore models were generated for 

both targets. The pharmacophoric features derived from 

MD-based models were also utilized to construct 

pharmacophore models based on the original PDB 

structures  

 For SGLT1: Pharmacophore model for SGLT1 

was generated in two versions: one derived from MD 

simulations (S1-MD, Figure 8) and one from the original 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Pharmacophore model from the original crystal structure (S1-PDB) including: (A) pharmacophore model within the binding pocket; 

(B) pharmacophore model overlaid with ligand conformations from the four representative MD clusters; (C) refined pharmacophore model 

consisting of three essential features and two constraint features selected from five identified pharmacophoric features. The light pink sphere 

represented hydrogen bond donors/acceptors, purple spheres indicate hydrogen bond donors, light blue spheres was hydrogen bond acceptors, 

green spheres represented hydrophobic features, and orange sphere corresponded to aromatic ring features. 
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Figure 10. MD-derived pharmacophore model for SGLT2 (S2-MD), including: (A) pharmacophore model within the binding pocket; (B) 

pharmacophore model overlaid with ligand conformations from the four representative MD clusters; (C) refined pharmacophore model 

consisting of five features. The light pink spheres represented hydrogen bond donors/acceptors, yellow sphere was aromatic ring features or 

hydrophobic features, green sphere represented hydrophobic features, and orange sphere corresponded to aromatic ring features. 
 

crystal structure (S1-PDB, Figure 9). Both models 

shared the same five pharmacophoric features, 

consisting of three essential points and five constraint 

points. Of which, 3 essential points included F1 (Don 

and Acc) for hydrogen bonding groups such as C2-OH, 

C3-OH glycosid of ligand to acid amines Glu102 and 

Lys321; F2 (Aro) for aromatic interactions like π-π 

interactions of benzene group of ligand to His83; and F3 

(Hyd) hydrophobic interactions between benzene with 

Ile98 and Phe101. Two constraint points were as 

follows: one of two points including F4 (Acc) for 

hydrogen acceptor like -OH group of Ser94 and F5 

(Don) for hydrogen donor with Thr287; and one of three 

points including F6 (Hyd) for hydrophobic interactions 

with Leu274; F7 (Hyd) for hydrophobic interactions 

with methylsulfanyl group of Leu268, Met283, Thr460  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11. Pharmacophore model from the original crystal structure (S2-PDB) including: (A) pharmacophore model within the binding pocket; 

(B) pharmacophore model overlaid with ligand conformations from the four representative MD clusters; (C) refined pharmacophore model 

consisting of three essential features and two constraint features selected from five identified pharmacophoric features. The light pink spheres 

represented hydrogen bond donors/acceptors, yellow sphere was aromatic ring features or hydrophobic features, green sphere represented 

hydrophobic features, and orange sphere corresponded to aromatic ring features. 
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Table 6. Pharmacophore evaluation for SLGT1 and SGLT2 models (S1-MD, S2-MD and S1-PDB, S2-PDB) with test dataset compounds for 

SGLT1 (active compounds: 60 and inactive compounds: 663) and for SGLT2 (active compounds: 332 and inactive compounds: 853). 

 

Pharmacophore model 
SGLT1 SGLT2 

S1-MD S1-PDB S2-MD S2-PDB 

Compounds safisfying the model  142 150 349 343 

Active compounds safisfying the model 56 55 297 289 

Inactive compounds safisfying the model 86 95 52 54 

Inactive compounds not satisfying the model 577 568 801 799 

Active compounds not safisfying the model 4 5 35 54 

Sensitivity  93.33% 91.67% 89.46% 87.05% 

Specificity 87.03% 86.43% 93.90% 93.79% 

Accuracy 87.55% 86.86% 92.66% 91.90% 

Enrichment factor  4.75 4.42 3.04 3.01 

GH score 0.46 0.43 0.81 0.80 

 

and F8 (Don) for hydrogen donor with amide group of 

Asp454. Each model was designed to select compounds 

that match all three essential features and at least two of 

the constraint features (Partial Match: At least 5). 

For SGLT2: Pharmacophore model for SGLT1 

was generated in two versions: one derived from  MD 

simulations (S2-MD, Figure 10) and one from the 

original crystal structure (S2-PDB, Figure 11). Both 

models shared the same five pharmacophoric features, 

including F1 (Don and Acc: hydrogen bonding forming 

from C2-OH of ligand with acid amines Phe98 and 

Lys321); F2 (Don and Acc: hydrogen bonding forming 

at the site of C3-OH of ligand with acid amines Asn75 

and Glu99); F3 (Aro: hydrophobic interactions (π-π) 

between chlorophenyl group of ligand with acid amines 

His80); F4 (Aro|Hyd: hydrophobic interactions π-π with 

Phe98 and hydrophobic interactions with Leu84, Val95 

and Phe453); F5 (Hyd: hydrophobic interactions 

between tetrahydrofuran group of ligand with Phe98 

and Leu274). 

Pharmacophore evaluations: For S1-MD and 

S1-PDB models, testing group included 60 active 

compounds and 663 inactive compounds while for S2-

MD and S2-PDB, testing group included 332 active 

compounds and 853 inactive compounds (Table 6). 

Although both MD-derived and PDB-based 

pharmacophore models share identical feature types, the 

spatial arrangement and inter-feature distances differ 

due to the conformational flexibility captured through 

MD simulations (Figure 8, 9, 10, 11). This 

conformational diversity allowed MD-based models 

(S1-MD and S2-MD) to more accurately represent the 

dynamic nature of the binding pocket, which might 

explain their improved performance in pharmacophore-

based virtual screening compared to static PDB-derived 

models10,11. 

 Table 6 demonstrated that the pharmacophore 

models built from the clusters of a MDs simulation (S1-

MD và S2-MD) were chosen as they showed better 

ability to distinguish between active and decoy ligand 

structures, better than the pharmacophore models 

obtained from the PDB structures.  

 For SGLT1: the model S1-MD better than the 

S1-PDB model in terms of sensitivity (93.33% > 

91.67%), specificity (87.03% > 86.43%), accuracy 

(87.55% > 86.86%), Enrichment factor (4.75 > 4.42) 

and GH score (0.46 > 0.43). 

 For SGLT2: the model S2-MD better than the 

S2-PDB model in terms of sensitivity (89.46% > 

87.05%), specificity (93.90% > 93.79%), accuracy 

(92.66% > 91.90%), Enrichment factor  (3.04 > 3.01) 

and GH score (0.81 > 0.80). 

 Although the differences between MD- and 

PDB-based models are modest, the consistent 

improvement across all key performance metrics 

suggests that incorporating dynamic conformational 

information contributes meaningfully to virtual 

screening quality and hit identification. 
 

Table 7. Ten compounds satisfied the pharmacophore features of both SGLT1 and SGLT2 
 

Number Name Classify 

C155 Neodiosmin Flavonoid glycosid 

C156 Apigenin-7-O-neohesperidosid Flavonoid glycosid 

C157 Neobudofficid Flavonoid glycosid 

C165 Pinoresinol diglucosid Lignan glycosid 

C186 Hispidulin-7-O-rutinosid Flavonoid glycosid 

C203 Daidzin Flavonoid glycosid 

C241 Acid 1,5-dicaffeoylquinic Organic acid 

C258 Apigenin-7-O-rutinosid Flavonoid glycosid 

C261 3’,4’,5,7-tetrahydroxyflavanon 7-O-(α-L-rhamnopyranosyl-(1->3)-β-D-glucopyranosid Flavonoid glycosid 

C270 Syringaresinol-4-O-β-D-glucopyranosid Lignan glycosid 
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Figure 12. Ten compounds satisfied the pharmacophore features of both SGLT1 and SGL 

 

Virtual screening 
 

 Two selected pharmacophore models, S1-MD 

và S2-MD were used for screening Vietnamese 

phytochemical compounds database. There were 39 

compounds met the criteria of the S1-MD and 12 

compounds satisfying the S2-MD models. Of which, 10 

compounds (Figure 12 and Table 7) including 7 

flavonoid glycosid, 2 lignan glycosid and 1 organic 

acid) satisfied all of pharmacophore features of both 

SGLT1 and SGLT2. The flavonoid were also proven in 

different studies to possess inhibitory acitivity on 

SGLT1 and SGLT2 in vitro as follows: (−)−kurarinon 

(IC50 = 10.4 µM for SGLT1 and IC50 = 1.7 µM for 

SGLT2)5 and sophoraflavanon G (IC50 = 18.7 µM for 

SGLT1 và IC50 = 4.1 µM for SGLT2)5 while lignan 

glycosid and organic acids have not been any bioassays 

for the inhibitory activity on SGLT1 and SGLT2.  
 

Induced-fit molecular docking 

 

 Before docking, the process of redocking were 

conducted using MOE program in order to evaluate the 

compatability of structures and the programs. The 

results showed that the MOE program was suitable for 

molecular docking for SGLT1 and SGLT2 structures 

with the good compatability and high reproduction of 

the initial structure.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 13. Redocking for the structure obtained from the PDB structures: A) SGLT1 with PDB code: 7WMV and B) the molecular dynamics 

simulation of SGLT1; and C) SGLT2 with PDB code: 7VSI and D) the molecular dynamics simulation of SGLT2. 
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Figure 14. Molecular structure of 7 potential compounds as dual-inhibitors of SGLT1, SGLT2 
 

 For SGLT1, in the both structures of SGLT1 

obtained from MDs and the PDB structure (Figure 13), 

the co-crystallised ligand (LX2761) fitted well in the 

binding pocket of the protein with good binding affinity 

and binding interactions, particularly the value of 

RMSD between the ligand after docking and the co-

crystallised ligand of less than 2,0 Å (RMSD = 1.57 Å, 

docking score =  -11.66  kcal.mol-1)  and for  PDB  
 

Table 8. Docking scores and binding interactions of 7 potential compounds and the reference compound into the structures of SGLT1 and 

SGLT2, with HB: hydrogen bond. 
 

Compound 
Binding affinity (kcal.mol-1) Binding interactions 

SGLT1 SGLT2 SGLT1 SGLT2 

C155 -11.75 -11.94 
HB: Glu102, Thr287 

π-π: His83 

HB: Asn75, Glu99 

π-π: His80, Phe98 

π-alkyl: Leu84, Val95 

C156 -10.07 -11.25 

HB: Glu102, Lys321, Thr287 

Alkyl interaction: Met283 

π-alkyl: Ile98 

HB: Phe98, Glu99, Lys321 

π-π: Phe98 

π-alkyl: Leu84, Val95 

C157 -13.67 -13.90 
HB: Glu102, Lys321 

π-π: His83 

HB: Phe98, Glu99, Lys321 

π-π: His80, Phe98 

π-σ: Leu84, Val95 

C165 -11.64 -11.23 

HB: Glu102 

π-π: His83 

alkyl interactions: Ile98, Phe101, Met283 

HB: Asn75, Glu99 

π-π: Phe98 

alkyl interactions: Val95 

C186 -11.34 -10.56 

HB: Glu102, Lys321, Thr287 

π-π: His83 

π-σ: Ile98 

HB: Asn75, Glu99 

π-π: His80, Phe98 

π-alkyl: Val95 

π-σ: Leu84 

C258 -10.43 -12.20 

HB: Glu102, Lys321 

π-π: Phe101 

π-alkyl: Ile98, Met283 

HB: Asn75, Glu99 

π-π: His80 

π-alkyl: Phe98 

C270 -11.47 -11.61 
HB: Ser94, Glu102, Lys321, Thr287 

π-σ: Ile98 

HB: Asn75, Phe98, Glu99, Lys321 

π-π: Phe98, Phe453 

alkyl interactions: Val95, Leu274 

π-alkyl: Phe98 

Sotagliflozin -9.50 -10.26 

HB: Glu102, Lys321, Thr287 

π-π: His83 

π-alkyl: Ile98 

HB: Asn75, Phe98, Glu99, Lys321 

π-π: His80, Phe98 

π-σ: Leu84 

alkyl interactions: Val95 
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Figure 15. Reference compound and seven potential compounds in the binding site of SGLT1 (A) and SGLT2 (B) 
 

structure (RMSD = 0.98 Å, docking score = -11.25 

kcal.mol-1). Similarly, in the Figure 13, the co- 

crystallised ligand (empagliflozin) bound well in the 

binding pocket of the protein SGLT2 with good docking 

scores for both the structures and the value of RMSD 

between the ligand after docking and the co-crystallised 

ligand of less than 2.0 Å: with structure obtained from 

MDs (RMSD = 1.30 Å, docking score = -9.62 kcal.mol-

1) and the structure retrieved from PDB (RMSD = 1.10 

Å, docking score = -9.84 kcal.mol-1). Therefore, the 

structures obtained from MDs for both SGLT1 and 

SGLT2 proteins were chosen for further screening 

process. 

 Among 10 compounds docked into the binding 

sites of SGLT1 and SGLT2, respectively, there were 7 

compounds (C155, C156, C157, C165, C186, C258 và 

C270-Figure 14 and Table 8) fitted well in the structure 

of SGLT1 and SGLT2 with their good binding affinities 
 

Table 9. The values of logP, logS and the evaluation results of these seven compounds following ADMET and Lipinski’s rule. 
 

Compound 
Parameters 

LogP LogS Lipinski’s rule of five Toxicity 

C155 -0.41 (hydrophilic) -5.27 (poorly soluble) Violation of 3 No 

C156 -0.66 (hydrophilic) -4.19 (poorly soluble) Violation of 3 No 

C157 -1.04 (hydrophilic) -4.74 (poorly soluble) Violation of 3 No 

C165 -1.35 (hydrophilic) -3.12 (poorly soluble) Violation of 3 No 

C186 -0.45 (hydrophilic) -4.70 (poorly soluble) Violation of 3 No 

C258 -0.41 (hydrophilic) -4.54 (poorly soluble) Violation of 3 No 

C270 0.65 (hydrophobic) -3,66 (highly soluble) Violation of 2 No 

A. SGLT1 

 

B. SGLT2 
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ranged from -10.07 to -13.67 kcal.mol-1 (for SGLT1) 

and -10.56 đến -13.90 kcal.mol-1 (for SGLT2). These 

compounds were selected as potential dual inhibitors for 

SGLT1 and SGLT2. Three remaining compounds C203, 

C241 và C261 could not get into the two structures. This 

could be explained that due to their nature structure, such 

as C203 (flavonoid daidzein) possessing isoflavone 

instead of flavanone like the seven compounds; C241 

having acid quinic in the center  but the caffeoyl group 

owning the long chain carbon, so the benzene in this 

group not being in the convenient area for forming π-π 

interactions with the acid amins residues of the binding 

pocket; C261 with glucopyranose haiving both 

tetrahydroxyflavanon and rhamnopyranose groups at the 

positions of C1 and C3, hindrance in the adjacent position 

leading not to form the important interactions with the 

binding pocket of structures. 

 Docking result for the reference compound 

(sotagliflozin as dual SGLT1 and SGLt2 inhibitor) into 

the SGLT1 and SGLT2 was carried out with the same 

docking parameters of redocking. The results showed 

that sotagliflozin could attach the binding pocket of 

SGLT1 with good docking score (-9.50 kcal.mol-1) and 

of SGLT2 (docking score = -10.26 kcal.mol-1). 

Sotagliflozin formed key interactions with both SGLT1 

and SGLT2, including hydrogen bonds with Glu102, 

Lys321, and Thr287, and hydrophobic interactions with 

His83 and Ile98 in SGLT1, which helped anchor the 

glucose moiety of the inhibitor within the active site13. 

These interactions ensured tight and specific binding, 

particularly the hydrophobic contacted that stabilize the 

inactive conformation of SGLT1, thereby preventing 

glucose reabsorption. Similarly, for SGLT2, sotagliflozin 

established hydrogen bonds with Asn75, Phe98, Glu99, 

and Lys321, as well as hydrophobic interactions with 

His80, Leu84, Phe98, and Val95. These interactions were 

critical for maintaining strong binding affinity and 

effectively locking SGLT2 in its inactive state, 

contributing to the overall inhibitory effect on glucose12. 

 After docking, seven compounds also 

demonstrated these compounds bound in similar pose 

with the reference compound (Figure 14 and 15). Seven 

compounds (Figure 14) have similar characteristics 

including glycoside possessing many hydroxyl groups 

(-OH), in particular having at least two adjacent 

hydroxyl groups helping the structures attached inside 

the binding pockets leading to form hydrogen bonds and 

hydrophobic interactions with the key residues of 

SGLT1 and SGLT2. 

Seven compounds are required to be modified 

for synthesis to be orally administration as they did not 

comply with the Lipinski’s rule of five due to possessing 

glycoside group. Table 9 performed the values of logP, 

logS and the evaluation results of these seven 

compounds following ADMET and Lipinski’s rule. 

 The identification of seven natural compounds 

as potential dual inhibitors of SGLT1 and SGLT2 aligns 

with previous research on the therapeutic benefits of 

simultaneously targeting these both transporters. They 

exhibited binding affinities and key interactions within 

the active sites of SGLT1 and SGLT2 that are 

comparable to sotagliflozin, a known dual SGLT1/2 

inhibitor, demonstrated superior glycemic control1-2, 

thus providing mechanistic support for their potential 

efficacy. Notably, the incorporation of pharmacophore 

models derived from MD simulations ensures that the 

compounds were screened against dynamic, 

biologically relevant protein conformations, increasing 

the likelihood of identifying true binders. 

 Currently, there have not been any research 

about bioactivity as well as evaluation of inhibitory 

bioactivity of these seven compounds (Figure 10) 

regarding their inhibitory activity on SGLT1 and 

SGLT2. However, a preliminary biological relevance 

was explored based on traditional uses and existing 

pharmacological studies of the medicinal plants from 

which these compounds were isolated. These include 

reported hypoglycemic, cardioprotective, and vasodilatory 

effects, which suggest potential  relevance to SGLT 

modulation. These compounds were isolated from the 

medicinal plants with some publications related to these 

compounds. For example, ethanol extract of Valeriana 

officinalis - a medicinal herb with the same properties 

as Valeriana hardwickii had the effect of increasing 

coronary circulation, reducing heart rate and lowering 

blood pressure in cats55. Aqueous extract of Eucommia 

ulmoides leaves reduced significantly blood sugar levels 

and increased insulin and peptide-C concentrations in 

plasma56. Besides, compound C165 (pinoresinol 

diglucoside) had the effect of inhibiting cyclic AMP, 

dilating blood vessels and increasing coronary blood 

flow, helping to lower blood pressure in vitro57. Extract 

of leaves (Scoparia dulcis) had the effect of lowering 

blood sugar and HbA1c in diabetic mice48. Extract of 

artichoke leaves (Cynara scolymus) helped reduce 

blood glucose levels in mice54 and type 2 diabetic 

patients255.  

 Although no experimental data have yet 

confirmed their direct inhibitory activity against SGLT1 

and SGLT2, several of these compounds such as 

apigenin derivatives, pinoresinol diflucoside, and 

syringaresinol glucoside have been previously reported 

to exhibit pharmacological effects such as 

hypoglycemic, vasodilatory, or cardioprotective 

properties, which may support their therapeutic 

potential. The multitarget activity of these compounds 

may enhance their therapeutic value by addressing not 

only hyperglycemia but also the oxidative stress and 

low-grade inflammation commonly associated with 

type 2 diabetes. Thus, integrating this study’s findings  
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Figure 16. Seven compounds isolated from the medicinal plants as potential inhibitors for SGLT1 và SGLT2 
 

with the existing literature supports the scientific 

rationale for further investigating these compounds as 

promising candidates for dual SGLT inhibition, and 

highlights the value of combining in silico 

pharmacophore modeling with molecular docking for 

natural product-based drug discovery. In future work, 

predictive tools such as QSAR models, cell-based 

assays, and off-target interaction analysis (e.g., using 

SwissTargetPrediction) will be incorporated to 

strengthen the biological validation before conducting 

wet-lab experiments. This stepwise integration can 

provide more confidence in candidate prioritization and 

reduce experimental costs. Further wet-lab experiments 

are required to evaluate the bioactivity and also 

inhibitory activities of SGLT1 and SGLT2 of the seven 

compounds. 
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4. CONCLUSION 

 

 In this study, exploration of potential natural 

drugs targeting both SGLT1 and SGLT2 proteins for the 

treatment of type 2 diabetes was of interest. 

Pharmacophore models derived from molecular 

dynamics simulations (MDs) for both structures of 

SGLT1 were successfully constructed to overcome the 

issues of generating traditional structure-based 

pharmacophore from PDB structures. Through a virtual 

screening workflow that included pharmacophore 

matching and induced-fit docking, seven potential dual 

SGLT1 and SGLT2 inhibitors were identified. These 

compounds showed good inhibitories and satisfied the 

five features of two pharmacophore models for SGLT1 

and SGLT2. They also bound well in the binding sites 

of both proteins by forming key interactions similar to a 

reference compound, sotagliflozin with their binding 

affinities varied from -10.07 to -13.67 kcal.mol-1 for 

SGLT1 and from -10.56 to -13.90 kcal.mol-1 for 

SGLT2. Further in vitro assays are needed to confirm 

their bioactivities as dual SGLT1 and SGLT2 inhibitors.  
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