In silico drug discovery of flavonoids as potential PPAR agonists in treatment of metabolic syndrome

Bao Hoang Gia Nguyen, Phuong Chau Uyen Nguyen, Khoi Anh Nguyen, Phat Nguyen Pham, Phuong Thuy Viet Nguyen*

Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam

ABSTRACT

Peroxisome proliferative activating receptors (PPARs) are a subfamily of three ligand-inducible transcription factors which are important targets in drug discovery for the treatment of metabolic syndrome (MetS). This study aimed to discover flavonoids as potential PPAR agonists. The results showed that the generated 3D-pharmacophore model for PPAR activators included four pharmacophoric features, namely one hydrophobic, two hydrogen acceptors and one hydrogen donor points, respectively. 648 out of 3,848 flavonoid compounds satisfied all the features of the chosen pharmacophore model. Molecular docking results demonstrated that these compounds bound well in the binding site of PPARs. Among them, F85 was the most potential compound with the binding affinities of PPARα (-9.6 kcal.mol⁻¹), PPARγ (-10.5 kcal.mol⁻¹), PPARδ (-9.5 kcal.mol⁻¹). Through forming hydrogen bonds and hydrophobic interactions with the key residues, F85 could reach deeper into the binding pocket of the receptors. Moreover, F85 was stable in the binding site of PPARs during the molecular dynamics simulations. Therefore, this compound was deemed to be potent as PPAR agonists.

Keywords: PPAR agonist, Flavonoids, 3D-Pharmacophore, Molecular docking, Molecular dynamics simulation

1. INTRODUCTION

Metabolic syndrome (MetS) is a public health concern. A person is diagnosed with metabolic syndrome if they have three or more of the following symptoms: obesity, high blood pressure, and high blood triglyceride. MetS prevalence is affected by both non-modifiable genetic (gender, ethnicity, and age) and modifiable (lifestyle, diet) risk factors. Furthermore, the prevalence of MetS in children and youth has grown significantly within the last 10 years. The MetS affects approximately 20-25% of adults and 19.2% of children, with the risk being elevated among patients with type 2 diabetes. MetS is a major cause of diabetics, coronary heart disease, and stroke.

PPARs are a group of nuclear receptor proteins that induce ligand-dependent transcription of target genes, playing important roles in regulating metabolic activities. The PPARs consist of three subtypes: PPARα, PPARβ/δ, and PPARγ. Currently, some PPAR agonists which act upon the PPARs are effectively used in the treatment of symptoms of MetS, such as fibrates (PPARα agonists) for treating hypertriglyceridemia, thiazolidinediones (PPARγ agonists) for slowing the progression of metabolic syndrome-related disorders, and PPARδ agonists for increasing fatty acid oxidation. However, there are some adverse effects listed as weight gain, renal effects, congestive heart failure, fluid retention, myopathy and rhabdomyolysis.

Recently, there have been intensively researches to develop multitarget-directed PPAR agonists with the synergistic reaction as well as fewer side-effect in MetS. For example, bezafibrate operated as a full agonist for all three PPAR isoforms. Lanifibranor is a well-balanced pan-PPAR agonist. Furthermore, many studies on flavonoids for activating PPARs, such as: formononetin could activate PPARα (EC₅₀=1.1 M), luteolin increased insulin sensitivity through PPAR activation, hesperidin...
improved PPARs expression in the liver, adipocytes, therefore enhanced PPARs expression21. As a result, flavonoids are potential class of substances to develop drugs towards targeting PPARs.

In this study, the main goal was to discover flavonoid compounds as a potential agonist on three PPAR receptors. Initially, a 3D-pharmacophore model for the PPAR activators was constructed. Subsequently, flavonoids were screened through this model. Finally, molecular docking and molecular dynamics simulations were combined to select the potential substances for PPARs.

2. MATERIALS AND METHODS

2.1. 3D-pharmacophore modeling

The development process of 3D-pharmacophore model for PPAR activators was carried out by using MOE 2022.02 software22. Dataset included both training set and test set compounds. The training set (Table 1) consisted of 10 compounds with different structural backbones collected from the previous articles19,23-27 (their EC\textsubscript{50} values for PPARs ranging from 0.29-9.55 μM). The values were compared to the EC\textsubscript{50} value of bezafibrate on PPARs (EC\textsubscript{50}=1.1 μM). Bezafibrate is an agonist on all three PPARs. The test set had two groups, the active and non-active groups. 36 compounds belonged to the active group with their values of EC\textsubscript{50}≤30 μM. The non-active group included 18 inactive compounds (the EC\textsubscript{50} values>30 μM)20 and 288 decoys obtained from ZINC15 database through using Decoy Finder 2.0.

Energy minimization for all conformations of the compounds was conducted by using the Conformation Import tool. Pharmacophore Elucidation tool was used for generation of a 3D-pharmacophore model, and the Pharmacophore Search for Criteria was for assessment process. Criteria of evaluating pharmacophore model were the values of accuracy, overlap, sensitivity (Se), and specificity (Sp). If a greater number of active substances satisfy the model, the model's reliability increases, and vice-versa.

Virtual screening was then conducted through using a generated pharmacophore model. Library compounds for screening included 3,848 flavonoids obtained from

Table 1. PPAR agonists belong to the training set.

<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
<th>EC\textsubscript{50} values (μM)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norkurarinone</td>
<td></td>
<td>7.30</td>
<td>19</td>
</tr>
<tr>
<td>Formononetin</td>
<td></td>
<td>1.10</td>
<td>19</td>
</tr>
<tr>
<td>(2E,4E,1′R,3′S,5′R,8′S)-Dihydro-phaseic acid 3′−O−β−D−gluopyranoside</td>
<td></td>
<td>9.55</td>
<td>23</td>
</tr>
<tr>
<td>(8S)-3-Methoxy-8,4′-oxyneolignan-4,9,9′triol 3′−O−β−D−gluopyranoside</td>
<td></td>
<td>0.64</td>
<td>23</td>
</tr>
</tbody>
</table>
Table 1. PPAR agonists belong to the training set. (cont.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
<th>EC$_{50}$ values (µM)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-larciresinol</td>
<td></td>
<td>1.47</td>
<td>23</td>
</tr>
<tr>
<td>5-(4-hydroxy-3-methoxyphenyl)-5- (3-hydroxypropyl)-6-methoxy-2-(3'-methoxy-4' -hydroxyphenyl)-3-benzofurancarboxaldehyde</td>
<td></td>
<td>4.32</td>
<td>23</td>
</tr>
<tr>
<td>3−O − β − D − glucopyanoside</td>
<td></td>
<td>0.29</td>
<td>25</td>
</tr>
<tr>
<td>Pluviatilol</td>
<td></td>
<td>1.64</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>Roseoside</td>
<td></td>
<td>1.55</td>
<td>27</td>
</tr>
</tbody>
</table>
PubChem database (https://pubchem.ncbi.nlm.nih.gov/). Compounds that satisfied the chemical features of the pharmacophore model were selected for further molecular docking.

2.2. Molecular docking

Three crystal structures of the PPARs: PPARα (PDB: 5HYK), PPARγ (PDB: 3NOA) and PPARδ (PDB: 648) were downloaded from RCSB Protein Data Bank (http://www.rcsb.org). Re-docking of co-crystallized ligands into the main binding site of PPARs to evaluate the docking protocol. Subsequently, flavonoids satisfy chemical features of the model were docked into the PPARs after energy minimizing by using Chem3D 20.0 and converting to *.pdb format and saving as *.pdbqt. The docking program was AutoDock Vina 1.1.2 and docking parameters were listed in Table 2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>PPARα</th>
<th>PPARγ</th>
<th>PPARδ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size x (Å)</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Size y (Å)</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Size z (Å)</td>
<td>26</td>
<td>-8.613</td>
<td>28</td>
</tr>
<tr>
<td>Center x</td>
<td>10.186</td>
<td>35.441</td>
<td></td>
</tr>
<tr>
<td>Center y</td>
<td>28.669</td>
<td>72.417</td>
<td></td>
</tr>
<tr>
<td>Center z</td>
<td>23.837</td>
<td>40.629</td>
<td>-0.793</td>
</tr>
</tbody>
</table>

2.3. Molecular dynamic simulations (MDs)

The potential candidate obtained from docking were subjected to MDs. The molecular dynamics simulations were run for both the complex of potential ligand and proteins and the apo proteins for 20 ns using Gromacs 2020.2 software. MDs investigated the stability and the flexibility of proteins and ligands and the protein-ligand complexes. The process included many stages: preparation of the topology, generation of a cubic simulation box and solvation in water, adding ions, energy minimization, system equilibration with a temperature of 300 K and a pressure of 1 bar for 100 ps and running MDs. Viewing trajectories and analysing the results in terms of the values of RMSD (root-mean-square-deviation), RMSF (root-mean-square-fluctuation), hydrogen bond occupancy, Rg (radius of gyration) and solvent-accessible-surface area (SASA).

3. RESULTS AND DISCUSSION

3.1. 3D-pharmacophore modeling

Pharmacophore modeling was constructed based on different structural compounds with the PPAR activation EC50 values. There are 17/83 (about 20%) pharmacophore models with an accuracy of 1.000. All 17 models are four-point pharmacophore models with good overlap scores (4.5575 to 6.1352). These models possessed at least one hydrophobic group and one hydrogen bond donor. It was compatible with the full agonist of PPARs, like the natural agent, eicosasoi acid and the synthetic compound, bezafibrate owning one hydrophobic domain and the other activating domain forming hydrogen bonds with key residues in the binding site of PPARs.

The generated pharmacophore models consisted of four common pharmacophoric features, including one hydrophobic, two hydrogen acceptor, and one hydrogen donor groups (Figure 1). Among 17 models, the pharmacophore model was chosen based on the values of high specificity (74%), high accuracy (74%), and high sensitivity (75%).

The pharmacophore model was used for the screening process of 3,848 flavonoids. The results revealed 648 flavonoids satisfying four chemical features of the model. Figure 2 illustrated these pharmacophoric features shared by flavonoids, i.e. the benzene ring of basic flavonoid skeletons as hydrophobic, hydroxyl group (-OH) or glucosyl substituents as a hydrogen bond donor, a methoxyl group (-OCH3), carbonyl (-CO), and oxygen atom on the heterocycle as a hydrogen bond acceptor.

3.2. Molecular docking

Before performing molecular docking to explore binding modes of flavonoids with the PPARs, re-docking of the co-crystallized ligands into the main binding site of PPARs was conducted. The results revealed that the native ligands fitted well into the binding sites of PPARs with good docking scores: PPARα (-11.6 kcal.mol⁻¹), PPARγ (-11.5 kcal.mol⁻¹), PPARδ (-12.2 kcal.mol⁻¹). The native ligands also had similar interactions with the re-docked ligands of PPARs and the root mean square deviation (RMSD) values obtained between them were 0.9345, 0.5044, 0.5336 (Å), respectively (Figure 3). These results confirmed the docking program’s reliability, allowing to apply docking protocol for docking other ligands to explore the binding interactions of flavonoids and PPAR receptors.

In order to better understand the interactions of PPARs and flavonoids, molecular docking analysis was used. 648 flavonoids satisfying four chemical features of the model were explored to bind well into the PPARs with the binding affinities ranging from -5.6 to -11.0 kcal.mol⁻¹ (PPARα), -6.9 to -10.9 kcal.mol⁻¹ (PPARγ), -5.6 to -11.0 kcal.mol⁻¹ (PPARδ). Analysis of binding
Figure 1. The pharmacophore model for PPAR activators with 4 points, including one hydrophobic (Hyd: green color), two hydrogen acceptors (Acc2: blue color), and one hydrogen donor (Don2: purple color).

Figure 2. Illustration of four-point pharmacophoric features for PPARs shared by flavonoids compounds including aurone, chalcone, dihydrochalcone, flavan, flavanol, flavone, flavonol and isoflavone.
Figure 3. Re-docking results of PPARs: (A) PPARα (PDB: 5HYK), (B) PPARγ (PDB: 3NOA) and (C) PPARδ (PDB: 3GZ9) with the superimposition of the co-crystallized ligands and the re-docked ligands in the PPAR binding sites; and 2D binding interactions of the PPARs and these native ligands.

interactions between flavonoids and the three PPARs demonstrated the flavonoid subgroups such as flavone, flavonone, flavane, flavanone possessed better binding affinities due to the presence of ring C related to forming extra hydrophobic interactions with the key residues of PPARs than the other flavonoids.

Our docking study suggested that F85 (5-Hydroxy-7-[3-O-(3,4,5-trihydroxybenzoyl)-beta-D-glucopyranosyloxy] flavone (Figure 4) was the most potential compound with the binding affinities into the PPARα (-9.6 kcal.mol⁻¹), PPARγ (-10.5 kcal.mol⁻¹) and PPARδ (-9.5 kcal.mol⁻¹). The phenyl group of F85 was located in the arm of the one branch of the PPAR binding pocket, interacting with -OH of Tyr464 (PPARα) or His449 and Tyr473 (PPARγ) by hydrogen bonds. On the other hand, F85 aromatic rings also formed the hydrophobic interactions with Ile281, Gly284 towards the other branch of PPARγ binding site. The Y-shaped cavity of PPARδ is smaller than the ligand binding site of PPARα and PPARγ. Thus, it can be seen that F85 with bulky struc-
ture could not enter deeply in this binding site. However, this compound created other hydrogen bonds with the amine (NH$_2$) of Thr288, Thr289; (-CO) of Ile364 as well as hydrophobic interactions with His449, Val341, Leu33, Thr288 which helped to achieve good binding affinity with the receptor.

With PPARα, flavonoids from the chalcone group owning bulky substituents such as glucosyl in F131, benzyl group in F465 were able to form hydrogen bonds with hydroxyl group of Tyr464 as well as one hydrophobic interaction with carbon chain of Leu321 involved in the binding cavity of PPARα. Moreover, the key residue, Tyr464 could also created hydrogen bonds with small substituents of flavonoids, such as hydroxyl group (-OH) in F95, F44, F93 and F96 (Figure 5).

In PPARγ, most chalcone and dihydrochalcone interacted specifically with Cys285 of helix 3 through hydrophobic interaction. Figure 6 illustrated 5 flavonoids belonged to chalcone group with good binding affinities (-7.6 to -10.7 kcal.mol$^{-1}$). Hydroxyl group of A-ring of F99, glucosyl group of F484 and carbonyl group on A-ring of F73 formed a hydrogen bond with the side chain hydroxyl group of Tyr473.

Figure 4. Structure of F85 and 2D binding interactions with green line represented for hydrogen bond; purple, pink, and yellow line for hydrophobic contacts after docking to PPARs (A: PPARα, B: PPARγ, C: PPARδ).

Figure 5. Illustration of flavonoids from the chalcone group with good binding affinities in the PPARα (PDB: 5HYK).
Figure 6. Illustration of flavonoids from the chalcone group with good binding affinity for PPARγ (PDB: 3NOA).

Figure 7. RMSD values of apo-proteins (PPARα, PPARγ, PPARδ) compared to F85-PPARs complexes and RMSD of ligand F85 during 20 ns MDs.

3.3. Molecular dynamics simulations (MDs)

It was considered to be an efficient method for validating the stability of the predicted docked F85-PPARs complexes, 20 ns MDs studies of these complexes were performed. The MDs were analyzed by the values of RMSD (Figure 7), RMSF (Figure 8), Rg (Figure 9) and SASA (Figure 10) for the complexes and apo-proteins, showing that F85 was stable within the binding cavity of PPARs during 20 ns.

The complexes of F85-PPARs reached in a steady state at the early phase of the simulation. This study found that the RMSD of F85 complexes with PPARα, PPARγ, and PPARδ were 0.1 nm, 0.2 nm, and 0.1 nm, respectively (Figure 7). The fluctuations remained within the range of 0.2 nm or 2.0 Å, indicating stabilization in the protein complex structure. The key amino acids in the binding site belonging to helices H3, H4, H5, H10, H11, and H12 showed lower RMSF values in the F85-PPARs complexes than apo-proteins. The histograms also showed
the Rg values were stable around 2 nm during 20 ns (Figure 9). Furthermore, there were no significant change in terms of SASA values during F85 binding to PPARs (Figure 10). That means PPARs remained steady state. For most of the simulations, F85 formed hydrogen bonds with all three PPARs with relatively high occupancy from 50 to 86% as follows: 6 hydrogen bonds formed between F85 and the PPARα amino acids Phe273, Cys276, Thr289, Ser280, Ile317, Tyr334 and His440; 2 hydrogen bonds formed between F85 and the PPARγ amino acids Ser342 and Arg288; and 3 hydrogen bonds formed between F85 and the PPARδ amino acids Ala342, Lys367 and His449 (Figure 11).

Overall, it was shown that F85 binding tightly and stably into the binding sites of the three PPAR receptors. F85 formed the hydrogen bonds with key amino acids of PPARs and created hydrophobic interactions. The docking and MDs results were consistent. Of which, F85 maintained some hydrogen bonds with high occupancies such as Tyr334 (79.56%) and His440 (76.32%). However, some hydrogen bonds were unstable and replaced by hydrophobic interactions after running MDs. For example, with PPARα, F85 interacted through hydrogen bonds with Tyr464, Tyr334, His440 as well as hydrophobic interaction with Cys276. However, the hydrophobic interaction with Cys276 changed into hydrogen bond with high occupancy (82.65%) and hydrogen bond with Tyr464 lost after running MDs, showing unstable of these interactions. With PPARγ, after MDs, the interactions of F85 with the receptor such as hydrogen bonds with His449, Tyr473; and hydrophobic interactions with Ile281, Gly284 were replaced by other hydrogen bonds with Ser342 and Arg288. It also happened with the complex of F85 and PPARδ, the hydrogen bonds with Thr288, Thr289, Ile364 and hydrophobic interactions with His449, Val341, Leu333, Thr288 were lost. Only hydrogen bond between F85 and Thr289 existed with low occupancy (34.97%) and hydrophobic interaction with His449 was changed into hydrogen bonds (good occupancy of 82.74%).

Currently, there is no available study of F85 bioactivity. F85 is lipophilic with the value of logP of 1.26; and moderately soluble in water. This compound is a large natural compound with a bulky glucosyl group connected to phenyl, so F85 does not satisfy the Lipinski’s rule of five. Thus, it was suggested for structural modification to design a full agonist on the PPARs.

Therefore, dual-agonist/pan-agonist activities on PPARs have the beneficial synergistic effect on Mets. Clinical trials have shown that dual agonists can be safe and effective depending on the individual patient’s condition. On the other hand, flavonoids are the potential compounds for research. They are also known as a potential class of substances to develop drugs towards targeting the PPARs. In line with the general trend of previous reports, this study has accomplished in the discovery of flavonoid compounds with high affinity of binding into all three PPARs, that are potentially activated by F85 compound.

Figure 8. RMSF values of apo-proteins (PPARα, PPARγ, PPARδ) compared to F85-PPARs complexes during 20 ns MDs.
Figure 9. Rg values of apo-proteins (PPARα, PPARγ, PPARδ) compared to F85-PPARs complexes during 20 ns MDs.

Figure 10. SASA values of apo-proteins (PPARα, PPARγ, PPARδ) compared to F85-PPARs complexes during 20 ns MDs.

Figure 11. Percentage of hydrogen bonds between F85 and the residues of (A) PPARα (PDB: 5HYK), (B) PPARγ (PDB: 3NOA), (C) PPARδ (PDB: 3GZ9) during 20 ns MDs.
4. CONCLUSION

In this study, an integrated three-step protocol including ligand-based pharmacophore modeling, molecular docking and molecular dynamics simulations was applied for virtual screening of the flavonoids database to discover novel PPAR agonists. 3,848 flavonoids were filtered through the constructed 3D pharmacophore model, with 648 compounds satisfied for chemical features. Based on molecular docking and MD simulations results, F85 showed the best binding affinity with the PPARs. F85 was stable in the three complexes with PPARs by forming the hydrogen bonds with key residues. These results revealed that F85 could be considered as a novel potential PPAR agonist. Further experimental studies, such as determining the binding capacity of F85 in PPARs, investigation of potential activating bioactivity of flavonoids on PPARs, and structural modification were required to improve the drug-likeness of F85.

5. ACKNOWLEDGEMENT

We would like to thank the University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam for the funding for this research.

Conflict of interest
There is no conflict of interest.

Funding
Funding from University of Medicine and Pharmacy at Ho Chi Minh, City

Ethics approval
None to declare.

Article info:
Received November 1, 2022
Received in revised form February 21, 2023
Accepted March 8, 2023

Author contribution
BHGN: virtual screening
PCUN: molecular docking
KAN: pharmacophore model
PNP: molecular docking
PTVN: study design, manuscript editing

REFERENCES
24. Thao NP, Luyen BT, Ngan NT, Dat LD, Cuong NX, Nam NH, et al. BHGN: virtual screening.

