Toxicodendron succedaneum (L.) Kuntze (Japanese wax tree): A review on its phytochemistry, pharmacology, and toxicity

Shailendra S. Gurav¹, Charmaine Dias¹, Nilambari S. Gurav², Sameer J. Nada³, Muniappan Ayyanar⁴

¹ Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa – 403 001, India
² PES’s Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa – 403 401, India
³ Sant Gajanan Maharaj College of Pharmacy, Site Chinchewadi, Mahagoan - 416503, Maharashtra, India
⁴ Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Poondi - 613 503, Tamil Nadu, India

ABSTRACT

Toxicodendron succedaneum (L.) Kuntze (Anacardiaceae) is a deciduous tree widely distributed in South and Southeast Asia. The resin of *T. succedaneum* is used in decorating traditional handicrafts, and resinous latex is poisonous. The plant yields a commercially important wax and treats asthma, cough, fever, ear infections, pulmonary infections, diarrhoea, dysentery, nose bleeding, and liver disorders. The scientific literature on *T. succedaneum* was collected from Scopus, PubMed, and Google Scholar. Major bioactive compounds reported in the plant are urushiols, bichalcones, biflavonoids such as succedaneaflavanone, agathisflavone, rhusflavanone, amentoflavone, cupressuflavone, robustaflavone, volkensiflavone, morelloflavone, and hinokiflavone. *In-vitro* studies have demonstrated the antioxidant, antibacterial, antitumor, and antileukemic activities of *T. succedaneum*, supporting the rationale behind its traditional use. Biflavonoids exhibited a strong antiviral effect by inhibiting the replication of HIV, HBV, and HSV. However, with the presence of hinokiflavone and a skin-irritating oil (urushiol), the plant causes severe allergies in humans, which urges to standardize the effectiveness of this species. The available literature on *T. succedaneum* suggests insufficient data on pharmacological studies in experimental animals. Much research needs to be done to confirm its folk medicinal uses for developing phytopharmaceutical drugs.

Keywords: Anacardiaceae, Biflavonoids, Pharmacology, Phytochemistry, Toxicity, *Toxicodendron*

1. **INTRODUCTION**

The Anacardiaceae, commonly known as the cashew family or the sumac family, includes about 80 genera with 870 species. Most of the members of the Anacardiaceae bear edible fruits (with fleshy drupes) and, in several cases, produce urushiol (a skin irritant) and possess resin canals that give clear and milky exudates. The resinous sap of Anacardiaceae hardens and turns black when exposed to the air. Anacardiaceae has several economically important plants like cashew (*Anacardium* L.), mango (*Mangifera* L.), poison ivy (*Toxicodendron* Mill.), sumac (*Rhus* L.), smoke tree (*Cotinus* Mill.), marula (*Spondias* L.), Peruvian pepper (*Schinus* L.) and pistachio (*Pistacia* L.).

The taxa belonging to the genera *Toxicodendron* and *Rhus* have ambiguities in their respective places due to their similar characteristic features in the structure of inflorescence, flowers, and fruits (Table 1). *Rhus* and *Toxicodendron* are widespread genera in subtropics and temperate regions with many populations in South Africa, East Asia, and North America. However, *Toxicodendron* has been considered a separate genus with unique features like the presence of toxic resins, absence of red-colored glandular hairs on pedicels, axillary fruits, and much smaller pollen grains than the taxa of *Rhus*. *Toxicodendron* comprises 24 species primarily distributed in temperate and subtropical regions, especially in the temperate regions. However, some of the taxa of *Toxicodendron* have a common occurrence in...
the tropical areas ranging from Central America, South America, and southeastern Asia. The members of the genus *Toxicodendron* are deciduous shrubs or trees with milky latex in their phloem, which in turn black upon air exposure, and mesocarp of fruits also possess waxy latex produced from resin ducts. The genus, *Toxicodendron* Mill. (the name is derived from the Greek word ‘toxicos’ meaning poison, and *dendron*, meaning tree) includes *Toxicodendron succedaneum* L. Kuntze (Japanese wax tree), *T. vernicifluum* (Stokes) F.A. Barkley (Chinese-Japanese lacquer tree), *T. toxicariu* (Rhus) Gilles, *T. diversilobum* (Torr. & A. Gray) Greene (poison oak), *T. vernix* L. Kuntze (poison sumac), *T. radicans* L. Kuntze and *T. rydbergii* (Small ex. Rydb.) Greene (poison ivy) is a commercially and medicinally important species. The lacquer (obtained from lacquer tree), the sap obtained by tapping lacquer trees, has been used as a coating and painting material for a long time in the countries like China, Japan, Thailand, Vietnam, and the Korean Peninsula, with its water resistance, antioxidant, and corrosion resistance properties. The resin produced in *T. succedaneum* and *T. vernicifluum* is used in decorating traditional handicrafts, and resinous latex is poisonous, which causes severe dermatitis problems in more sensitive individuals by the urushiol.

Several species of *Toxicodendron* are used in various systems of conventional medical practices in several countries and are studied for antioxidant, antibacterial, anticancer, anti-inflammatory, antiviral, antitumor, and neuroprotective activities. The promising potential of this underexplored plant can be explored for its appealing source of phytochemicals because of the presence of different oils. However, the *Toxicodendron* species can cause severe skin allergies due to the urushiol. Moreover, other mechanisms of action of *T. succedaneum* and its components should be investigated to understand the pharmacological activities of various plant parts for broader use. This review will thus cover the phytochemical, pharmacological, and toxicological properties of the plant and its botanical aspects.

The scientific literature on *T. succedaneum* was collected from various sources, including Scopus, PubMed, and Google Scholar. During the search, various online and offline resources were taken into consideration. In addition, the references of selected articles, including back references of each article, were also screened manually for additional information. The coverage for published data on *Toxicodendron succedaneum* is up to 2020.

2. BOTANICAL DESCRIPTION AND DISTRIBUTION

According to the “The Plant List” (http://www.theplantlist.org/), *T. succedaneum* (L.) Kuntze species have three synonyms: *Rhus erosus* Radlk., *Rhus succedanea* var. *japonica* Engl., and *Toxicodendron succedaneum* var. *succedaneum*. In contrast, it is known by four synonyms: *Albonia peregrina* Buc’hoz, *Rhus fraxinifolia* Salisb, *Rhus succedanea* L., and *Toxicodendron succedanea* (L.) Moldenke, according to “Plants of the World Online” (https://powo.science.kew.org/). It is commonly referred to as a wax tree or Japanese Sumac tree. Fruits of the plant yield a commercially important wax (Japan wax) with several bioactive molecules. Because of its beautiful and colored autumn foliage, the plant has been introduced into several countries as an ornamental plant.

T. succedaneum is native to Eastern Asia and distributed in Japan, Korea, Laos, Thailand, Vietnam, India, Nepal, Bhutan, Bangladesh, Myanmar, China, Pakistan, and Oceania, with more occurrences in the lowland and hill forests. It was believed that *T. succedaneum* originated from the mainland of Japan, with several controversies, such as being introduced from China/continental Asia to Japan. Also, it was introduced from the Ryukyu Islands of southwestern Japan and naturally distributed on mainland Japan with the intermittent introduction of superior individuals by various researchers or farmers for cultivation. However, the major distribution of this plant in the wild is mostly on mainland Japan, and it may be due to the seed dispersal from plantations on nearby islands. *T. succedaneum* was cultivated during the late 16th century in various places of Japan, especially in western Japan, to produce sumac wax/Japan wax, which is extracted from the mesocarp of the fruit.

The plant is a small deciduous tree growing to
approximately 12 m. The stem is thick, glabrous, much-branched, and has thick bark producing white latex on injury14. The leaves are imparipinnate compound type, arranged opposite with inflated petiole, whereas the leaflets are entire, glossy, glabrous, and purple having many parallel lateral veins nearly perpendicular to the midrib. It is a sought-after ornamental tree due to its attractive autumn foliage. In the autumn, the color of the leaves changes to red, orange, or scarlet. The flowers are small and greyish-yellow born on paniculate inflorescence, and the tawny fruits appear as pendulous clusters.

The seedling stem, petiole, and midrib showed the presence of four well-developed resin canals in the phloem, and the 3 to 4-year-old root has 4 to 6 resin canals in the primary portion of the bast and 4 to 6 resin canals in the secondary portion, which are arranged circularly in two rows15. The sepals and petals also have a sizeable vascular bundle in the midrib and a large resin canal in its phloem component. Thus, the mesocarp of fruits possesses several small and large resin canals that run parallel from the base of the fruit stalk and up to the style. Various cultivars of \textit{T. succedaneum} have been cultivated during the last three centuries, along with many old cultivars in Japan, and are propagated by grafting16.

3. MEDICINAL USES OF \textit{T. SUCCEDANEUM}

\textit{T. succedaneum} is widely used in indigenous systems of medicine to treat asthma, cough, colicky pains, and gastritis suppression17. In addition, \textit{T. succedaneum} leaf galls (formed due to the invasion of the insect, psyllids) are also used in different indigenous systems of Indian medicine to treat cough, asthma, fever, ear infections, pulmonary infections, diarrhea, dysentery, controlling vomiting, nose bleeding, respiration, and liver disorders. Furthermore, it has astringent, antiviral, tonic, expectorant, and stimulant properties18-19.

Japanese wax is mainly used in traditional Japanese candles. High-quality cosmetics such as fragrant oil used to make the top-knot in the hair of sumo wrestlers for the Japanese coiffure, and other commercially important industrial products are produced from the haze wax, obtained from the fruit skins of the tree13,16,20.

4. PHYTOCHEMICAL CONSTITUENTS

The genus \textit{Toxicodendron} is rich in biflavonoids, urushiols, and bi-chalcones2 (Table 2). The sap (lacquer) obtained from the various species of \textit{Toxicodendron} formed into tough and intense polymeric film after drying and was used as a surface coating material for wood, porcelain, and metalware in Japan7. The forming of this polymeric film involves complicated and unique enzymatic oxidative coupling with the association of various biomolecules21. In addition, the crushing of which is highly viscous and contains a good quantity of janic acid22.

4.1. Qualitative analysis of phytochemicals

The leaf extract of \textit{T. succedaneum} showed the presence of carbohydrates, proteins, amino acids, alkaloids, phenols, flavonoids, terpenoids, saponins, anthraquinones, and terpenoids14. The lacquer sap of \textit{T. succedaneum} is a complex mixture of several chemical components like lipids (catechol and phenol derivatives), glycoproteins, polysaccharides, gum, water, and laccase enzymes23.

<table>
<thead>
<tr>
<th>Class of phytochemical</th>
<th>Isolated compounds</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biflavonoids</td>
<td>Amentoflavone</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Hinokiflavone</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Rhusflavanone (Rhusflavone)</td>
<td>31,32</td>
</tr>
<tr>
<td></td>
<td>Agathisflavone</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Succedaneaflavonone</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Robustaflavone</td>
<td>34-36</td>
</tr>
<tr>
<td></td>
<td>Cupressuflavone</td>
<td>12,37,38</td>
</tr>
<tr>
<td></td>
<td>Spicataside</td>
<td>12,37,38</td>
</tr>
<tr>
<td></td>
<td>Neorhusflavonone</td>
<td>12,37,38</td>
</tr>
<tr>
<td></td>
<td>Volkenstiflavone</td>
<td>12,37,38</td>
</tr>
<tr>
<td></td>
<td>Morelloflavone</td>
<td>12,37,38</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Fustin</td>
<td>37,38</td>
</tr>
<tr>
<td></td>
<td>Fisetin</td>
<td>37,38</td>
</tr>
<tr>
<td></td>
<td>Rhoifolin</td>
<td>39</td>
</tr>
<tr>
<td>Urushiol (Catechol derivatives)</td>
<td>10(Z),13(E),15'(E)-heptadecatrienyl-hydroquinone</td>
<td>24,26,27</td>
</tr>
<tr>
<td></td>
<td>10(Z),13(E)-heptadecadienyl-hydroquinone</td>
<td>24,26,27</td>
</tr>
<tr>
<td></td>
<td>10(Z)-heptadecenyl-hydroquinone</td>
<td>24,26,27</td>
</tr>
</tbody>
</table>
4.2. Quantitative analysis of phytochemicals

The quantitative analysis of the ethanolic extract of leaf showed a notable amount of alkaloids (0.19 mg/g), flavonoids (0.16 mg/g), and sterols (0.15 mg/g). The laquer is made up of 42-44% laccal (a significant lipid component and substituted catechols with saturated and unsaturated side chains), 16-17% of gum, 3-7% of insoluble glycoprotein, and 0.1-1.0% of laccase enzyme along with 32-39% of water.

4.3. Catechol derivatives

Catechol is one of the groups of toxic organic compounds which possess three isomeric benzenediols. The laquer film of T. succedaneum contains urushiol and laccal monomers along with alkenes, alkanes, alkenyl phenols, and alkylphenols (with longer side chains) after the pyrolysis at 500°C. Urushiol is a mixture of toxic organic compounds in oily resin and contains several lipophilic catechol derivatives, especially pentadecylcatechols and heptadecylcatechols. Three alkyl groups of hydroquinones like 10(Z)-heptadecenylhydroquinone, 10(Z),13(E),15(E)-heptadeca-3,7,10(Z),13(E)-heptadecatetrienyldihydroquinone were isolated from the sap of T. succedaneum with about 1.5 to 2.0% of dry weight.

4.4. Biflavonoid compounds

The biflavonoids such as amentoflavone (3′,8′-biapigenin) and hinokiflavone, biflavonones like rhusflavone/rhusflavanone (6,8′-binaringenin), agathisflavone (6,8′-biapigenin), and succedanea-flavonone (6,6′-binaringenin) were isolated from defatted ethanolic extracts of the drupes of T. succedanea. The drupes of T. succedaneum are reported to have agathisflavone, succedanea-flavanone, rhusflavanone, amentoflavone, robustaflavone (3′,6′-biapigenin), rhusflavone, cupressuflavone (3′,6′-biapigenin), spicataside, neorhusflavone, volkensin-flavone, morelloflavone, 7-O-β-glucoside, and hinokiflavone (Figure 1).

4.5. Flavonoid compounds

The heartwood of the plant contains fustin (flavanonol) and fisetin (dietary flavonoid), especially the fisetin is responsible for yellow color of the heartwood. Rhoifolin (apigenin-7-rhamnoglucoside), a glycoside of apigenin, was extracted in good quantity (0.04%) during the late spring season along with gallic acid and tannins from the leaf of T. succedaneum. The growth stage is one of the factors for the high yield of phenolic compounds, total and reducing sugars. In the early growth stages, total phenolics and total flavonoids were increased in the T. succedaneum leaf, and in the middle stages, they doubled. Also, total sugar and reducing sugar content were decreased in the plant’s late growth stages. Lin et al. (1997) reported an improved purification method for a higher yield of robustaflavone from seed kernel extracts of T. succedanea.

4.6. Other compounds

Fruits of T. succedaneum yielded 5.2% of essential oils while extracted using a CO2 supercritical fluid extraction technology. Apart from extracting various phytochemicals from different parts of the plant, leaf and stem galls of T. succedaneum are also reported to have flavonoids, saponins, tannins, and catechins. Similarly, the methanolic extract obtained from the leaf gall showed the presence of steroids, triterpenes, alkaloids, flavonoids, and carbohydrates. Furthermore, a copper-containing blue protein was isolated from the purified stem latex of the plant. The oxidizing property was increased by the enzyme apolaccase and cupric ion obtained by treating the enzyme with cyanide.

5. PHARMACOLOGICAL ACTIVITIES

5.1. Antioxidant activity

The aqueous extract of T. succedaneum leaf gall exhibited significant concentration-dependent DPPH and nitric oxide radical scavenging activity with the IC50 of 27.33 μg/mL and 32.63 μg/mL, respectively. The study also stated that the concentration of nitrite after spontaneous decomposition of sodium nitroprusside with the aqueous extract of plant gall could contain bioactive compounds that can scavenge nitric oxide. The compounds like 10(Z)-heptadecenyl-hydroquinone, 10(Z),13(E),15(E)-heptadeca-3,7,10(Z),13(E)-heptadecatrienyl-hydroquinone and 10(Z),13(E)-heptadecadienyl-hydroquinone isolated from the sap of T. succedaneum showed significant antioxidative potency at the concentration of 4 ppm which is close to the standard butylated hydroxytoluene (BHT).

5.2. Antibacterial activity

The essential oil extracted from the fruits of T. succedaneum showed noticeable inhibitory activity against the growth of Bacillus subtilis. Methanolic and hexane extracts of T. succedaneum leaf galls showed significant antibacterial activity against pathogenic bacteria such as Escherichia coli, Salmonella typhi, Micrococcus luteus, and Staphylococcus aureus. The
Figure 1. Major phytochemicals isolated from the various parts of *T. succedaneum*.
methanolic extract exhibited a better effect with the maximum zone of inhibition of 16±2 to 23±1 mm. The authors believe that the potential effects of leaf gall extract is due to the presence of phytochemicals like steroids, triterpenes, alkaloids, and flavonoids. The antibacterial activity of the aqueous extract of the T. succedaneum galls effectively controlled the growth of the P. aeruginosa and E. coli with the zone of inhibition of 28 and 28.8 mm, respectively, at a higher concentration (900µg/disc).

5.3. Antileukemia activity

The compound 10'(Z),13'(E),15'(E)-heptadecatrienyl-hydroquinone (HQ17(3)) isolated from the sap of T. succedaneum showed a reduction in topo IIα and c-Myc (a crucial upstream regulator of microRNAs especially miR-17-92 polycistron) activity and down-regulating the miR-17-92 clusters in the leukemia cells like K562, Molt-4, Ramos, and U937 which are more sensitive to HQ17(3) cells when treated with various doses for about 24h.

5.4. Antitumour activity

Hinokiflavone, a flavonoid isolated from the defatted ethanolic extracts of T. succedanea drupes, exhibited considerable cytotoxic activity on ether linkage between two units of apigenin with the ED₅₀ of ≤20μg/mL against KB tissue culture cells. The cancer cell lines such as cervix epithelioid carcinoma (HeLa), hepatoma cell line (Huh7), colorectal cancer cell line (HCT116), colon adenocarcinoma (LoVo), and rat C6 glioma cells were shown cytotoxicity with the compounds, hydroquinones-10'(Z)-heptadecenyl-hydroquinone (IC₅₀ of 2.0-4.5 µg/mL), 10'(Z),13'(E), 15'(E)-heptadecatrienyl-hydroquinone (IC₅₀ of 3.5-6.0 µg/mL).
and 10′(Z),13′(E)-heptadecadienyl-hydro-quinone (IC₅₀ of 2.9-6.4 μg/mL) isolated from the sap of *T. succedanea*²⁶. Methanolic extract of *T. succedanea* showed remarkable anticancer activity and significantly inhibited the DU145, PC-3, H1975, HCT116, and A375 cancer cell lines' cell growth and viability in a concentration-dependent manner.²⁶ The study revealed that the plant extract inhibited the growth of DU145 and A375 (E) cells up to 75% (IC₅₀ of 24.5 and 13.13 μg/mL respectively), 80-90% of inhibition on the growth of PC-3(B), H1975 (C) and HCT116 (D) cells with the IC₅₀ of 11.04, 7.71, 8.87 μg/mL respectively.

5.5. Antiviral activity

Biflavonoids are identified as potential bioactive molecules and reported to have hypoglycemic, hepatoprotective, antimicrobial, antioxidant, antiviral, cytotoxic, and inhibitory effects on lipid peroxidation.²⁷ Several biflavonoids have been isolated from various parts of *T. succedanea*, possessing a wide range of pharmacological activities, especially potential antiviral properties.

The biflavonoids including agathisflavone, hinokiflavone, amentoflavone, robustaflavone, rhusflavanone, and succedaneaflavanone were isolated from the seed kernels of *T. succedanea* with noticeable antiviral activity.²⁷ Robustaflavone exhibited a strong antiherpetic (HSV-1 and HSV2) and anti-influenza A activity against the strains H1N1 and H3N2 with the EC₅₀ of 1.9 and 4.1 μg/mL, respectively. Amentoflavone exhibited potential antiviral activity against both influenza virus strains with the EC₅₀ of 3.1 and 4.3 μg/mL, respectively. Also, robustaflavone, amentoflavone, and agathisflavone showed significant antiviral activity against the influenza B virus. Furthermore, rhusflavanone and amentoflavone were effective against the measles virus and respiratory syncytial virus, respectively.²⁷

The hepatitis B virus (HBV) replication was potentially inhibited by the robustaflavone (isolated from the seed kernel of *T. succedanea*) in human hepatoblastoma cell lines at EC₅₀ of 0.25 μM and in vitro selectivity index of 153.²⁷ Furthermore, their study revealed the ability of robustaflavone to penetrate the core of viral particles, and inhibition of nucleic acid synthesis occurs in the early stages of HBV replication. They assumed that robustaflavone was encapsulated during the viral particle assembly inside the host cell.

Robustaflavone is one of the novel non-nucleoside natural drugs with strong anti-HBV activity.²⁸ As compared to other naturally occurring biflavonoids, biflavonones, and semi-synthetic derivatives (lamivudine and penciclovir), robustaflavone has distinct structural properties that inhibit HBV replication. The results showed comparable antiviral activity with the known HBV nucleoside anti-HBV agents, lamivudine, and penciclovir.²⁷ They also studied the synergistic effect of these natural and synthetic antiviral compounds in several ratios, where the 10:1 ratio of robustaflavone with lamivudine was found to be most effective with an EC₅₀ of 0.054 μM as compared to 3:1 ratio of robustaflavone with penciclovir having an EC₅₀ of 0.11 μM.

Agathisflavone, amentoflavone, robustaflavone, hinokiflavone, rhusflavanone, and succedaneaflavanone, all isolated from the *T. succedanea* seed kernels, stimulated primary human peripheral blood mononuclear cells and primary human lymphocytes infected with HIV-1.³⁷ Robustaflavone and hinokiflavone showed excellent anti-HIV activity with an EC₅₀ of 65 μM and 62 μM, respectively; agathisflavone and amentoflavone exhibited a significant amount of anti-HIV-1 activity with an EC₅₀ of 119 μM and 100 μM respectively. Their study revealed that the biflavonoids with two apigenin units linked either through C-C or C-O-C bonds showed better anti-HIV-1 activity in the reverse transcriptase enzyme. Biflavonoids with flavone-flavone unit linkages recorded moderate to weak activity, and compounds comprising two naringenin units or naringenin-eriodictol linkages were less active against HIV replication. It was revealed that the antiviral activity of the bioflavonoid compounds was purely related to the methylation of the hydroxyl groups.³⁸

5.6. Toxicity

A common skin disease called ‘allergic contact dermatitis is caused mainly by several species of Anacardiaceae.³⁹ *Toxiodendron* possesses skin-irritating oil, urushiol (3-pentadecylcatechol), which causes severe allergic to humans. Several genera also contain lacquer in their phloem, ideal for making commercial anticorrosives or decorative paints.³ Some of the species of *Toxiodendron* cause severe allergic dermatitis after contact with persons who have been sensitized by long-term exposure to the plants. Though *T. succedaneum* has many medicinal properties, various plant parts generate allergic problems in humans and are classified as noxious weeds in Australia and New Zealand. *T. succedaneum* produces a highly toxic and allergic latex on incision on the stem that causes severe dermatitis whenever a person’s body comes in contact with the plant.¹⁴

The allergic dermatitis effect of the plant was reported by Nakamura²² as a case study. Nakamura²² conducted a patch test with the leaf and stem extract of *T. succedaneum* and 0.01% urushiol to confirm the plant's toxicity. Topical applications of corticosteroids with antihistamines showed effective treatment for contact dermatitis. The plant’s high allergic property was due to the urushiol found in the resin canals of leaf, bark, and root.²²,⁵⁰ Rademaker and Tuffill³¹ reviewed more than 140 cases of phyto-dermatitis in New Zealand.
Their study revealed that *T. succedaneum* leads to contact dermatitis in the tested patients, especially those in direct contact with the injured plant parts, and topical application of corticosteroids showed effective and speedy recovery.

The compound HQ17(3) isolated from the sap of *T. succedaneum* is a well-known cytotoxic compound that possesses a cytotoxic effect on cancer cells. It effectively inhibits topoisomerase IIα activity by reacting with cysteine residues of topo-IIα and inhibiting the growth of topo II-deficient cells HL-60/ MX2 with the EC₅₀ of 9.6 μM⁵²-⁵³. In addition, the HQ17(3) isolated from the sap of this plant significantly inhibited tyrosinase activity and suppressed melanin production in animal cells with an IC₅₀ of 37 μM. It is considered a key inhibitor of tyrosinase and melano-genesis²⁸.

6. CONCLUSION

The scientific research on *T. succedaneum* suggests a huge biological potential of this plant. The detailed information on medicinal properties, phytochemical constituents, and various biological activities of various extracts, as presented in this review, might provide detailed evidence for the use of this plant in different medicines. Although the plant has many medicinal properties, as evidenced by various researchers, different parts of the plant have severe toxicity, leading to side effects during consumption. Phytochemical analysis of various parts of *T. succedaneum* showed a vast number of bioactive compounds. The pharmacological potential of *T. succedaneum* reviewed here may be due to several bioactive compounds reported in the plant. However, only a few studies evaluated the pharmacological potential of isolated biflavonoid compounds like agathisflavone, hinokiflavone, amentoflavone, and robustaflavone for anti-viral properties against the replication of various deadly viruses like HIV, HBV, and HSV. Unfortunately, most of the studies on the plant appeared to be only partial, with *in-vitro* studies and a lacuna in experimental and clinical studies. Therefore, further research is needed to confirm its medicinal uses for developing herbal formulations/drugs through clinical studies, which help to advocate this species as a potential herbal drug.

Author contribution

SSG, CD, NSG, and SJN made literature collection, validation, formal analysis, and writing the original draft. SSG and MA conceived the idea of this review, made the data curation, review, and editing. MA revised the manuscript and supervised the whole writing process. All authors have read and approved the final version of this submission.

Conflict of interest

The corresponding author thanks the Science & Engineering Research Board (SERB), Government of India, New Delhi, for financial support (Grant No. EMR/2016/007164) for writing this manuscript.

Funding

None to declare.

Ethics approval

None to declare.

Article info:

Received January 30, 2022
Received in revised form June 6, 2022
Accepted July 28, 2022

REFERENCES

12. Lin YM, Chen FC, Lee KH. Hinokiflavone, a cytotoxic principle

432

34. Ishikura N. Seasonal changes in contents of phenolic compounds and sugar in Rhus, Euonymus and Acer leaves with special reference to anthocyanin formation in autumn. Bot Mag Tokyo. 1976;89(4):251-7. doi:10.1016/BF02493301

