

SCIENTIFIC

Viscoelasticity and Oscillation Experiment

Mr. Prompong Tansawet / Product Manager (089) 923-2804 prompong @Imsinstr.com LMS Instruments Co., Ltd. 02-612-9091 to 2

The world leader in serving science

Overview

- Repetition of some basic terms
 - Viscoelastic behavior
- Experimental approach to viscoelasticity by Oscillation
 - Amplitude sweep
 - Frequency sweep
 - Temperature sweep
 - Time sweep

Repetition of some basic terms

Calculation of the dynamic viscosity

Repetition of some basic terms

Calculation of the dynamic viscosity

Overview

- Repetition of some basic terms
 - Viscoelastic behavior
- Experimental approach to viscoelasticity by Oscillation
 - Amplitude sweep
 - Frequency sweep
 - Temperature sweep
 - Time sweep

General considerations about viscoelasticity

Viscoelastic behavior

Reasons for viscoelasticity

Entenglements

Polymer solutionsPolymer melts

Network formation

Viscoelastic behavior

Viscoelastic behavior

Models for viscoelasticity

Overview

- Repetition of some basic terms
 - Viscoelastic behavior
- Experimental approach to viscoelasticity by Oscillation
 - Amplitude sweep
 - Frequency sweep
 - Temperature sweep
 - Time sweep

Experimental approach to viscoelasticity

Oscillation

- ✓ A usually sinosoidal oscillation is being applied by the rheometer
- ✓ Controllable parameters are the maximum amplitude (Δx_i) of the shear stress (τ) or deformation (γ) as well as the (angular) frequency (f, ω) and the temperature (T)

Principle of measurement

Viscoelastic sample

Phase shift (δ) between stress and deformation signal is between 0° and 90°

Results I

Results I

Results I

/ Phase angle	$S(0^\circ > S < 00^\circ)$
	$0(0 \ge 0 \le 90)$
Loss factor	$tan\delta = G''/G'$
Complex viscosity	η*= G* / i ω
🖌 Angular frequency	$\omega = 2\pi f$
	(f = frequency)

When to perform oscillatory measurements

- When information about viscoelasticity is wanted
- When the material's behavior at rest is of interest
- When a phase transition of a material is investigated
- When rotational experiments cannot be performed because
 - the investigated material is too elastic
 - the investigated material shows wall slip effects

Oscillatory test methods

Oscillatory tests in controlled deformation CD or controlled stress CS

Amplitude Sweep G', G'', $\delta \dots = f(\gamma_0 \text{ or } \tau_0)$ Frequency Sweep G', G'', $\delta \dots = f(f \text{ or } \omega)$ Temperature sweep

G', G'', $\delta_{...} = f(T)$

Time Sweep

 $G', G'', \delta \dots = f(t)$

- Increasing the amplitude of applied stress or deformation signal
- Determination of linear viscoelastic range (LVR)

- Changing frequency
 while keeping
 amplitude constant
- Determination of material character at different time scales
- Determination of temperature depending phase transitions and structural changes
- Investigation of curing and cross linking reactions
- Stability tests

Amplitude sweep

Amplitude sweep

Increasing amplitude in shear stress τ (CS) or deformation γ (CD) with constant frequency

✓ Determination of the linear-viscoelastic range (LVR), where material functions (G',G'', δ) are independent of the stress or the deformation applied

Information about product stability
 e.g. gel strength

Amplitude sweep

Increasing amplitude inshear stress τ (CS) or deformation γ (CD) with const. frequency

Amplitude sweep

Plotted over τ

Width of the linearviscoelastic range (LVR) depends on the frequency

Plotted over γ

Width of LVR is less frequency depending

Oscillatory test methods

Amplitude Sweep G', G'', $\delta \dots = f(\gamma_0 \text{ or } \tau_0)$

- Determination of the linear viscoelastic range (LVR)
- Within LVR rheological parameters are independent of applied deformation / stress
- Within LVR microstructure of sample does not change

Amplitude sweeps of cosmetic products

Frequency sweep

Variation of frequency with constant shear stress τ or deformation γ respectively

Determination of material's properties, which cannot be measured in shear

Frequency sweep

Viscoelastic behavior

In the region of low frequencies the sample behaves viscous

At high frequencies the elastic behavior predominates

Cross-Over-Point G' = G''

Frequency sweep

Cross-Over-Point

The Cross-Over-Point G' = G'' separates viscous flow at low frequencies and elastic behavior at higher frequencies

Oscillatory test methods

Frequency Sweep G', G'', $\delta \dots = f(f \text{ or } \omega)$

- Performed within LVR
- Within LVR rheological parameters are independent of applied deformation or stress

Oscillatory test methods

Frequency Sweep G', G'', $\delta \dots = f(f \text{ or } \omega)$

- a) viscoelastic fluid
 liquid soap
- b) viscoelastic fluid play putty
- c) viscoelastic solid
 soft lotion
- d) viscoelastic solid stiff cream

Freq. [Hz]	Time [s]	Time [min]	Time [h]	Time [d]
100	0.01			
10	0.1			
1	1			
0.1	10	0.17		
0.01	100	1.67		
0.001	1000	16.7	0.28	
0.0001	10000	167	2.78	0.12
0.00001	100000	1670	27.8	1.2
0.000001	1000000	16700	278	12

Temperature sweep

Temperature sweep

Variation of the temperature with constant shear stress τ or deformation γ and (angluar) frequency ω ,f

- Determination of the temperature depending sample charteristics
- Determination of the glas transition, softening and melting temperature
- Investigation of chrystallization processes and sol-gel transitions

Temperature sweep

Oscillatory test methods

Temperature sweep G', G'', $\delta... = f(T)$

- Determination of major phase transitions like
 - Melting point
 - Glass transition
- Monitoring temperature induced crystallization

Oscillatory test methods

Time Sweep <u>G', G'', δ ...</u> = f (t)

- Monitoring curing and cross-linking reactions
- Phase transition from liquid to solid like
- Cross-over point is often referred to as gel point

Dr. Fritz Soergel Senior Application Specialist

Dr. Klaus Oldörp Senior Application Specialist

The world leader in serving science

Any questions ?

In the second se

ThermoFisher SCIENTIFIC

The world leader in serving science

Thank you for your attention

