Introduction to Flow Cytometry

Thanapol Ngamvilaisiriwong Application Specialist BDB Thailand

Outlines

- Definition
- Principle and Flow Cytometer Components
- Interpretation of Flow Cytometry
- Multicolor and Compensation

Definition

- Flow = in Fluid Cyto = Cell Metry = Measurement
- Measurements are made on a per-cell basis
 - Not an average
- Routine rates of thousands of cells per second
 - Quick

- Simultaneous measurements of **multiple characteristics** of a **single cell** through its light scatter
 - Multi-parametric

Subsystems of Flow Cytometer

Electronics

To convert the optical signals to proportional digital signals, process the signals, and communicate with the computer.

Sector BD

Fluidic System

Electronics

To convert the optical signals to proportional digital signals, process the signals, and communicate with the computer.

Fluidic System

Optic System

Electronics

To convert the optical signals to proportional digital signals, process the signals, and communicate with the computer.

Example: Cellular distribution of Lysed Whole Blood

😮 BD

Example: Cellular distribution of Lysed Whole Blood

SSC-H

BD

Fluorescence

- The excitation wavelengths of a fluorochrome direct the choice of laser used to excite it.
- The **emission wavelengths** of a fluorochrome direct the choice of filters and PMTs used to measure the emission signal.

C BD

FITC

FITC

FITC

FIT

FITC

FITC

Fluorescence

Fluorochrome	Fluorescence Emission Color	Ex Max (nm)	Excitation Laser Line (nm)	Em Max (nm)	
BD Horizon™ BV421	Blue	405	405, 407	421	
BD Horizon™ V450	Blue	404	405, 407	448	
BD Horizon [™] V500-C	Green	415	405, 407	500	
BD Horizon™ BV510	Green	405	405, 407	510	
AmCyan	Green	457	405, 407	491	
FITC	Green	495	488	520	
PE	Yellow	496, 694	488	578	
BD Horizon™ BV605	Orange	407	405, 407	602	
APC	Red	650	633, 638, 640	659	
PerCP	Red	482	488	675	
PerCP-Cy™5.5	Far Red	482	488	693	
BD Horizon [™] APC-R700	Far Red	652	633, 638, 640	704	
РЕ-Су™7	Infrared	496, 694	488	777	
АРС-Су™7	Infrared	650	633, 638, 640	777	
APC-H7	Infrared	650	633, 638, 640	777	

Application for Flow Cytometry

Example: Cellular distribution of CD8+ in Lymphocytes

🙄 BD

Lymphocyte subsets

Example: Cellular distribution of CD8 in Lymphocytes

• Adding

🍪 BD

- Anti-CD45-PerCP: WBCs
- Anti-CD3-FITC: T cells
- Anti-CD8-PE: CD8+ T cells (Cytotoxic T cells)

Optical Filters

Lasers in BD Cytometers

Light Amplification by Stimulated Emission of Radiation

Wavelength (nm)

🙄 BD

• PMTs: Photomultiplier tubes

- Photodetectors are light sensors that can detect photons of light.
- Incoming photons cause photodetectors to produce electrical current.

- Amplifiers convert electrical current from photodetectors into a voltage.
- The resulting voltages are larger in magnitude than the incoming currents.

🙄 BD

Signal processors quantify voltage pulses, providing numerical values for pulse height, width, and area.

Electronic System

😂 BD

Signal Processing

🙄 BD

Doublet discrimination

🙄 BD

Doublet discrimination

• As shown in the graph below, cells along the diagonal are the single cells to be gated on. The cells off this diagonal should be excluded from the data. For this gate, use FSC-Height (FSC-H) by FSC-Area (FSC-A). SSC-H by SSC-A can also be used.

C BD

Data Generation

Digitized values

😮 BD

Plot types

Dot Plot vs Histogram

🙄 BD

Interpretation in Flow Cytometry

🙄 BD

Multicolor Flow cytometry and Compensation

Elements of Multicolor Flow Cytometry

• Considerations in designing panels

Fluorochromes

Emission Ultraviolet BUV395 BUV496 **BUV563** BUV661 BUV737 BUV805 (355 nm) BV480 Violet BV421 BV510 BV605 BV650 BV711 BV786 (405 nm) V450 V500 Laser BB515 Blue PerCP FITC PE-Cy[™]5 PE-Cy[™]7 PE PE-CF594 (<u>488 nm)</u> PerCP-Cy5.5 Alexa Fluor® 488 Yellow/Green ΡE PE-CF594 PE-Cy5 PE-Cy5.5 PE-Cy7 (561 nm) APC APC-R700 APC-H7 Red Alexa Fluor $^{\mathbb{R}}$ Alexa Fluor® (640 nm) APC-Cy7 647 700

Choice of fluorochromes depends on the available **instrument configuration** and the total number of markers being used in an experiment.

Antigen Characteristics

Leucocyte antigens can be categorized based upon their patterns of expression:

- Primary: Well characterized, easily classified as positive or negative, typically define broad subsets or lineages
 - Examples: CD3, CD4, CD19
- Secondary: Well characterized, typically expressed at a higher density, often over a continuum
 - Examples: CD27, CD28, CD45RA, CD45RO
- Tertiary: Expressed at low levels, variable upon activation unknown, critical
 - Examples: CD25, STAT5, FoxP3

Mahnke YD, Roederer M. Optimizing a multicolor immunophenotyping assay. *Clin Lab Med.* 2007;27:469-485.

Antigen/Fluorochrome Combinations

	Antigen \rightarrow	Low	Medi	um	High	
			Fluoroc	hrome 🗸 🦟		
		Very Bright	Bright	Moderate	Dim	
Laser	Ultraviolet (355 nm)		BD Horizon BUV661 BD Horizon BUV737 BD Horizon BUV563	BD Horizon BUV395 BD Horizon BUV496	BD Horizon BUV805	
	Violet (405 nm)	BD Horizon BV421 BD Horizon BV650 BD Horizon BV711	BD Horizon BV480 BD Horizon BV605 BD Horizon BV786	BD Horizon BV510	BD Horizon V450 BD Horizon V500	
	Blue (488 nm)	BD Horizon BB515 BD Horizon PE-CF594 PE-Cy5	PE PE-Cy7	FITC Alexa Fluor® 488 PerCP-Cy5.5	PerCP	
	Yellow/Green (561 nm)	PE BD Horizon PE-CF594 PE-Cy5 PE-Cy7				
	Red (640 nm)		APC Alexa Fluor® 647 BD Horizon APC-R700		Alexa Fluor® 700 APC-H7 APC-Cy7	

Resolution Effect of Fluorochrome

Spectral Overlapping

- Emission from multiple fluorochromes results in spectral overlap
- Detectors are selected to minimize fluorescence spillover
- BD Fluorescence Spectrum Viewer: bdbiosciences.com/spectra

Wavelength (nm)

C BD

Spectral Overlapping

Similar emission spectra (cross-laser)

Adjacent detectors

Residual base fluorescence

😮 BD

Spillover

	BD Biosciences Fluorochromes									
	~380	~480	~530	~575	~610	~660	~685	~710	~740	~780
Ultraviolet (355 nm)	BUV395	BUV496				BUV661			BUV737	BUV805
Violet (405 nm)		BV421 V450	BV510 V500		BV605	BV650		BV711		BV786
Blue (488 nm)			FITC BB515	PE	PE-CF594	PE-Cy5	PerCP PerCP-Cy5.5			PE-Cy7
Yellow/Green (561 nm)				PE	PE-CF594	PE-Cy5	PE-Cy5.5			PE-Cy7
Red (640 nm)						APC		APC-R700		APC-H7 APC-Cy7

- Fluorochromes with **similar emission spectra** will have the greatest potential for cross-laser spillovers
- Spillover into adjacent detectors
- Residual spillover between tandems and their base

Compensation

• Remove spillover signals so that Median fluorescence intensity (MFI) of populations concerned agree

C BD

Thank You

